
1

Paper SAS1716-2015

Using Boolean Rule Extraction for Taxonomic
Text Categorization for Big Data

Zheng Zhao, James Cox, Russell Albright, and Ning Jin
SAS Institute Inc.

ABSTRACT

Categorization hierarchies are ubiquitous in big data. Examples include MEDLINE’s Medical Subject Head-
ings (MeSH) taxonomy, United Nations Standard Products and Services Code (UNSPSC) product codes,
and the Medical Dictionary for Regulatory Activities (MedDRA) hierarchy for adverse reaction coding. A key
issue is that in most taxonomies the probability of any particular example being in a category is very small
at lower levels of the hierarchy. Blindly applying a standard categorization model is likely to perform poorly
if this fact is not taken into consideration.

This paper introduces a novel technique for text categorization, called Boolean rule extraction, which ena-
bles you to effectively address this situation. In addition, models that are generated by this introduced rule-
based technique can be easily interpreted and modified by a human expert, enabling better human-machine
interaction. The Text Rule Builder node and the newly developed HPBOOLRULE procedure in SAS® Text
Miner implement this technique. The paper demonstrates how to use the HPBOOLRULE procedure to
obtain effective predictive models at various hierarchy levels in a taxonomy.

INTRODUCTION

Hierarchies are becoming ever more popular for indexing and organizing large text corpora that contain
millions or even billions of documents. Well-designed hierarchies are important for enterprise-level content
categorization. The prevalence of complicated large-scale hierarchical taxonomies has generated a press-
ing need for the development of automated hierarchical text categorization. Most state-of-the-art hierar-
chical text categorization techniques fall into two classes of models: the top-down model and the flat model.
A top-down model builds a classifier for each node of the hierarchy, and a document is classified as a
member of a leaf category in the hierarchy if and only if it is also classified as a member of all the ancestor
categories of the leaf category.1 On the other hand, a flat model constructs a binary categorization problem2
for each leaf category of the hierarchy, and a document is classified as a member of the leaf category if the
prediction of the classifier that is built for the corresponding binary categorization problem is positive.

A flat model enjoys certain advantages over a hierarchical model. First, implementation of a flat model is
simple, and most existing classifiers can be used directly as base building blocks. Second, despite its sim-
plicity, a flat model might generate more accurate results in practice because it does not suffer the error
propagation problem of a hierarchical model. When a document is classified wrongly on an upper level of
a hierarchical model, the error is propagated to its descendant categories.

However, a flat model faces training difficulties. First, because it does not use a divide-and-conquer ap-
proach to solve a problem as a hierarchical model does, each of its base classifiers is usually exposed to
the full text corpus. Being exposed to the full text corpus requires the base classifier to be highly efficient,
especially when the size of the text corpus is large. Second, the base classifiers of the flat model usually
face the issue of data sparsity: many taxonomies consist of a very large number of leaf categories, and the
number of documents in a leaf category can be quite small even in a huge corpus. Because the binary
categorization problem is usually constructed by considering all documents that belong to the category as
positive and all documents that do not belong to the category as negative, there is a very high imbalance
between positive and negative samples for the constructed problem. This issue requires the base classifier

1 A leaf category is a node that has no children.
2 Hierarchy information can still be incorporated by constructing the binary categorization problem in certain ways.

2

to be very effective for handling rare targets. Figure 1 presents information about the frequency and distri-
bution of the category size for the Wikipedia data set,3 which contains 2,365,432 documents organized
under a hierarchy that has 325,056 non-empty categories. Figure 1 shows that about 90% of the categories
in the hierarchy contain fewer than 50 documents (less than 0.002% of the data).

Figure 1. Frequency and Distribution of Category Size of the Wikipedia Data

This paper introduces a novel technique for hierarchical text categorization via Boolean rule extraction. This
technique can automatically generate a set of Boolean rules by analyzing a text corpus. For example, you
could use this technique to generate the following rule set for documents that are related to bank interest:

(cut ^ rate ^ bank ^ percent ^ ¬ sell) or

(market ^ money ^ ¬ year ^ percent ^ ¬ sale) or

(repurchase ^ fee) or

(rate ^ prime rate) or

(federal ^ rate ^ maturity)

In this example, ^ indicates a logical and, and ¬ indicates a logical negation. The first line of the rule set
says that if a document contains the terms “cut,” “rate,” “bank,” and “percent” but does not contain the term
“sell,” it belongs to the bank interest category.

This technique has three advantages when you compare it to other techniques for hierarchical categoriza-
tion. First, the technique focuses more on modeling the positive documents in a category; therefore, it is
more robust when the data are imbalanced. Second, the rules can be easily interpreted and modified by a
human expert, enabling better human-machine interaction. Third, the algorithm adopts a set of effective
heuristics to significantly shrink the search space. These three advantages suggest that the technique can
be applied as the base classifier for the flat model without incurring some of the disadvantages mentioned
earlier. The basic operations of the algorithm are set operations, which are very fast. Therefore, the algo-
rithm is highly efficient and can handle very-large-scale problems.

This paper also describes the new HPBOOLRULE procedure and the Text Rule Builder node in SAS Text
Miner, which implement the introduced technique. The procedure provides a programming interface, and

3 http://lshtc.iit.demokritos.gr/files/second/datasets/wikipediaLarge2.0.tar.gz

1

10

100

1000

10000

100000

1000000

1 2001 4001 6001 8001 10001 12001

Frequency of Category Size

x=500

Distribution of Category Size

Size Frequency Percentage

0–10 202,777 62.38

11–50 95,086 29.25

51–100 15,447 4.75

101–500 10,618 3.27

 501–1000 763 0.23

1001–5000 343 0.11

 5001–10000 15 0.00

More 7 0.00

 Number of samples: 2,365,436

 Number of category: 325,056

3

the Text Rule Builder node provides a GUI interface. Finally, the paper demonstrates how to use the
HPBOOLRULE procedure to handle text categorization problems that have a complicated taxonomy.

BOOLEAN RULE EXTRACTION FOR TEXT DATA

Rule-based text categorization algorithms uses text rules to classify documents. Text rules are interpretable
and can be effectively learned even when the number of positive document is very limited. BOOLLEAR
(Cox and Zheng 2014) is a novel technique for Boolean rule extraction. When you supply a text corpus that
contains multiple categories, BOOLLEAR extracts a set of binary rules from each category and represents
each rule in the form of a conjunction, where each item in the conjunction denotes the presence or absence
of a particular term. The BOOLLEAR process is as follows (criteria and measurements that are used in this
process are described in the next section):

1. Use an information gain criterion to form an ordered term candidate list. The term that best predicts the
category is first on the list, and so on. Terms that do not have a significant relationship to the category
are removed from this list. Set the current term to the first term.

2. Determine the “estimated precision” of the current term. The estimated precision is the projected per-
centage of the term’s occurrence with the category in out-of-sample data, using additive smoothing
(Manning, Raghavan, and Schütze 2008). Create a rule that consists of that term.

3. If the “estimated precision” of the current rule could not possibly be improved by adding more terms as
qualifiers, then go to step 6.

4. Starting with the next term on the list, determine whether the conjunction of the current rule with that
term (via either term presence or term absence) significantly improves the information gain and also
improves estimated precision.

5. If there is at least one combination that meets the criterion in step 4, choose the combination that yields
the best estimated precision, and go to step 3 with that combination. Otherwise, continue to step 6.

6. If the best rule obtained in step 3 has a higher estimated precision than the current “highest precision”
rule, replace the current rule with the new rule.

7. Increment the current term to the next term on the ordered candidate term list and go to step 2. Con-
tinue repeating until all terms in the list have been considered.

8. Determine whether the harmonic mean of precision and recall (the F1 score) of the current rule set is
improved by adding the best rule obtained by steps 1 to 7. If it is not, then exit.

9. If so, remove all documents that match the new rule from the document set, add this rule to the rule
set, and go to step 1 to start creating the next rule in the rule set.

MEASUREMENTS USED IN BOOLLEAR

This section provides detailed information about the measurements that are used in BOOLLEAR to evalu-
ate terms and rules.

Precision, Recall, and the F1 Score

Precision measures the probability that the observation is actually positive when a classifier predicts it to
be positive, recall measures the probability that a positive observation will be recognized, and the F1 score
is the harmonic mean of precision and recall. A good classifier should be able to achieve both high precision
and high recall. The precision, recall, and F1 score are defined as

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

4

where TP is the true-positive (the number of documents that are predicted to be positive and are actually
positive), FP is the false-positive (the number of documents that are predicted to be positive but are actually
negative), TN is the true-negative (the number of documents that are predicted to be negative and are
actually negative), and FN is the false-negative (the number of documents that are predicted to be negative
but are actually positive).

A classifier thus obtains a high F1 score if and only if it can achieve both high precision and high recall. The
F1 score is a better measurement than accuracy4 when the data are imbalanced, because a classifier can
obtain very high accuracy by predicting that all samples belong to the majority category.

Information Gain Criterion

In steps 1 and 4, BOOLLEAR uses the g-test (Soka and Rohlf 1994), which is also known as the likelihood-
ratio or maximum likelihood statistical significance test, as a form of information gain criterion to evaluate
the correlation between terms and the target. The g-test generates by a g-score, which has two beneficial
properties: As a form of mutual information, it is approximately equivalent to information gain in the binary
case. And because it is distributed as a chi-square, it can also be used for statistical significance test-
ing. The g-test is designed to compare the independence of two categorical variables. Its null hypothesis is
that the proportions at one variable are the same for different values of the second variable. Given the TP,
FP, FN, and TN of a term, its g-score can be computed as

𝑔 = 2 ∑ 𝑂(𝑖) log (
𝑂(𝑖)

𝐸(𝑖)
)

𝑖={𝑇𝑃,𝑇𝑁,𝐹𝑃,𝐹𝑁}

𝑂(𝑇𝑃) = 𝑇𝑃; 𝑂(𝐹𝑃) = 𝐹𝑃; 𝑂(𝑇𝑁) = 𝑇𝑁; 𝑂(𝐹𝑁) = 𝐹𝑁

𝐸(𝑇𝑃) = (𝑇𝑃 + 𝐹𝑃) ∗
𝑃

𝑃 + 𝑁

𝐸(𝐹𝑃) = (𝑇𝑃 + 𝐹𝑃) ∗
𝑁

𝑃 + 𝑁

𝐸(𝑇𝑁) = (𝑇𝑁 + 𝐹𝑁) ∗
𝑁

𝑃 + 𝑁

𝐸(𝐹𝑁) = (𝑇𝑁 + 𝐹𝑁) ∗
𝑃

𝑃 + 𝑁

where P is the number of positive documents; N is the number of negative documents; O(TP), O(FP),
O(TN), and O(FN) refer to the observed TP, FP, TN, and FN of a term; and E(TP), E(FP), E(TN), and E(FN)
refer to the expected TP, FP, TN, and FN of a term. A term has a high g-score if it appears often in positive
documents but rarely in negative documents, or vice versa.

Estimated Precision

Estimated precision helps BOOLLEAR shorten its search path and avoid generating overly specific rules.
Computing the estimated precision is done by a form of additive smoothing with additional correction (𝑒𝑟𝑟𝑖)
to favor shorter rules over longer rules:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
𝑚(𝑡) =

𝑇𝑃𝑖,𝑡 +
𝑃

𝑁 + 𝑃
∗ 𝑚

𝑇𝑃𝑖,𝑡 + 𝐹𝑃𝑖,𝑡 + 𝑚
− 𝑒𝑟𝑟𝑖−1

𝑒𝑟𝑟𝑖 =
𝑇𝑃𝑖,𝑡

𝑇𝑃𝑖,𝑡 + 𝐹𝑃𝑖,𝑡

−
𝑇𝑃𝑖,𝑡 +

𝑃
𝑁 + 𝑃

∗ 𝑚

𝑇𝑃𝑖,𝑡 + 𝐹𝑃𝑖,𝑡 + 𝑚
+ 𝑒𝑟𝑟𝑖−1

In the preceding equations, the user-specified parameter 𝑚 (≥1) is for bias correction. A large 𝑚 is called

for when a very large number of rules are evaluated, in order to minimize selection bias. 𝑇𝑃𝑖,𝑡 and 𝐹𝑃𝑖,𝑡 are

the true-positive and false-positive of rule t when the length of the rule is i.

4 Accuracy=(TP+TN)/(TP+FP+TN+FN)

5

Improvability Test

In step 3, BOOLLEAR conducts an improvability test for “in-process” model pruning. To determine
whether a rule can be improved, BOOLLEAR applies the g-test on a perfect confusion table, which is de-
fined as:

TP 0

0 FP

In the table, TP is the true-positive of the rule and FP is the false-positive of the rule. The g-score that is
computed by using this table reflects the maximum g-score that a rule could possibly obtain if a perfectly
discriminating term is added to the rule. If the g-score is smaller than a user-specified number that indicates
a maximum p-value for significance, BOOLLEAR considers the rule to be unimprovable.

SHRINKING THE SEARCH SPACE

Exhaustively searching the space of possible rules is impractical because of the exponential number of
rules that would have to be searched (2𝑚 rules, where m is the number of candidate terms). Secondly, an
exhaustive search usually leads to overfitting by generating many overly specific rules. Therefore, BOOL-
LEAR implements the following strategies to dramatically shrink the search space to improve its efficiency
and help it avoid overfitting:

 Feature selection: BOOLLEAR uses the g-test to evaluate terms, and it adds only the top n terms to
the ordered candidate term list for rule extraction. The size of the candidate term list controls the size
of the search space. The smaller the size, the fewer the terms that are used for rule extraction, and
therefore the smaller the search space.

 Significance testing: In many rule extraction algorithms, rules are built until they perform perfectly on
a training set, and pruning is applied afterwards. BOOLLEAR prunes “in-process.” The following three
checks are a form of in-process pruning, in that rules are not expanded when their expansion doesn’t
meet these basic requirements. These requirements help BOOLLEAR truncate its search path and
avoid generating overly specific rules:

 Minimum positive document coverage: BOOLLEAR requires that a rule be satisfied by at least s
positive documents.

 Early stop based on the g-test: BOOLLEAR stops searching when the g-score that is calculated for
improving (or starting) a rule does not meet required statistical significance levels.

 Early stop based on estimated precision: BOOLLEAR stops growing a rule when the estimated
precision of the rule does not improve when the current best term is added to the rule. This strategy
helps BOOLLEAR shorten its search path.

 k-best search: In the worst case, BOOLLEAR could still examine an exponential number of rules,
although the heuristics described here minimize that chance. But because the terms are ordered by
predictiveness of the category beforehand, a k-best search is used to further improve the efficiency of
BOOLLEAR: If BOOLLEAR tries unsuccessfully to expand (or start) a rule numerous times with the a
priori “best” candidates, then the search can be prematurely ended. Thus, there are two optional pa-
rameters, 𝑘1 and 𝑘2, that determine the maximum number of terms to examine for improvement. The
first parameter can be added to step 7; if 𝑘1 consecutive terms have been checked for building possible
rules and none of them are superior to the best current rule, the search is terminated. Furthermore, in
step 4, if 𝑘2 consecutive terms have been checked to add to a rule and they don’t generate a better
rule, then the search for expanding that rule can be terminated. This helps BOOLLEAR shorten its
search path (even with a very large number of candidate terms) with very little sacrifice to accuracy.

 Improvability test: This tests whether adding a theoretically perfect discriminating term to a particular
rule could possibly both result in a statistically significant result and have a higher estimated precision
than the current rule. If not, then the current rule is recognized without additional testing as the best
possible rule, and no further expansion is needed.

6

 Early stop based on the F1 score: BOOLLEAR stops growing the rule set if adding the current best
rule does not improve its F1 score. Thus, the F1 score is treated as the objective to maximize.

HPBOOLRULE PROCEDURE

The HPBOOLRULE procedure implements the BOOLLEAR technique and will be available in single-ma-
chine mode in SAS Text Miner 14.1. In single-machine mode, PROC HPBOOLRULE can use all the cores
of a machine for parallel processing through multithreading. Distributed mode (which supports using multi-
ple machines) will be supported in a future release; it will require a license for SAS® High-Performance Text
Mining.

The following example shows how to first use the HPTMINE procedure to parse a text data set and then
use its outputs in the HPBOOLRULE procedure for rule extraction:

proc hptmine

 data = docs;

doc_id docid;

var text;

parse

 outparent = bow

 outterms = terms;

performance details;

run;

proc hpboolrule

 data = bow

 docid = _document_

 termid = _termnum_

 docinfo = docs

 terminfo = terms;

docinfo

 id = key

 targettype = binary

 targets = (target1 target2 target3);

terminfo

 id = key

 label = term;

output

 rules = rules

 ruleterms = ruleterms;

performance details;

run;

In the PROC HPTMINE step, the OUTPARENT= and OUTTERMS= options in the PARSE statement spec-
ify the names of data sets to contain, respectively, a term-by-document matrix (the data set Bow) and
summary information about the terms in the document collection (the data set Terms).

In the PROC HPBOOLRULE statement, the Bow and Terms data sets are specified as input in the DATA=
and TERMINFO= options, respectively. In addition, the DOCID= and TERMID= options in the PROC
HPBOOLRULE statement specify the columns of the Bow data set that contain the document ID and term
ID, respectively. The DOCINFO= option in the PROC HPBOOLRULE statement specifies the data set
(Docs) to contain information about the documents, and the TERMINFO= option specifies the data set
(Terms) to contain information about the terms.

The DOCINFO statement in the PROC HPBOOLRULE step specifies the following information about the
Docs data set:

 The ID= option specifies the column that contains the document ID. The variables in this column
are matched to the document ID variable that is specified in the DOCID= option in the PROC
HPBOOLRULE statement to fetch target information about documents for rule extraction.

 The TARGETTYPE= option specifies the type of the target variables.

7

 The TARGETS= option specifies the target variables.

The TERMINFO statement specifies the following information about the Terms data set:

 The ID= option specifies the column that contains the term ID. The variables in this column are
matched to the term ID variable that is specified in the TERMID= option in the PROC HPBOOL-
RULE statement to fetch information about terms for rule extraction.

 The LABEL= option specifies the column that contains the text of the terms.

Table 1 shows additional options in the PROC HPBOOLRULE statement that you can use to tune the
procedure’s performance.

Option Default Value Description

MPOS 8 m value for estimated precision computation

GPOS 8

Minimum g-score needed for the term or rule to be

considered. This corresponds to 𝑝 < 0.004.

MAXTRIESOUT 50
𝑘1 value for the k-best search for creating a rule that
begins with a term

MAXTRIESIN 150 𝑘2 value for the k-best search to add a term to a rule

MINSUPPORTS 3 s value for minimum document coverage

MAXCANDIDATES 500
n value for the maximum number of terms to be se-
lected as candidate terms

Table 1. PROC HPBOOLRULE Statement Options for Performance Tuning

TEXT RULE BUILDER NODE

SAS Text Miner is an optional add-on for SAS® Enterprise Miner™. The Text Rule Builder node, which can
be accessed on the Text Mining tab of SAS Enterprise Miner, is a standard modeling node and has com-
plete standard reporting features. The node enables you to develop repeatable and shareable process
flows for predictive modeling of your text data.

TEXT RULE BUILDER NODE PROPERTIES

Figure 4 shows the properties of the Text Rule Builder node. Starting with SAS Text Miner 14.1, the node
uses the HPBOOLRULE procedure to extract rules. In prior releases, the node used SAS macros and
DATA steps to extract rules.

The following settings are specific to the Text Rule Builder node:

Generalization Error determines which m value is used in the precision m-estimate for preventing overfit-
ting. Higher values do a better job of preventing overfitting at a cost of not finding potentially useful rules.

Purity of Rules determines which g value is used to test whether the rule can be improved. Higher values
result in earlier termination of rule creation and less chance that bogus rules will enter in, but they also
result in missing some marginally useful rules.

Exhaustiveness determines how many potential rules the rule search process considers at each step. This

option controls the value of the 𝑘1 and 𝑘2 parameters that are used in the k-best search. As the exhaustive-
ness increases, the amount of processing time that the Text Rule Builder node requires also increases.

Content Categorization Code enables you to view the Content Categorization Code window. You can
copy the code that is provided in that window and paste it into SAS® Content Categorization Studio.

Change Target Values enables you to view the Change Target Values window, where you can view and
reassign target values. As a result, you can rerun the node and iteratively refine your model.

8

RESULT DIAGRAMS OF TEXT RULE BUILDER NODE

Figure 3Error! Reference source not found. shows the result diagrams that are displayed by the Text
Rule Builder node. The following diagrams are specific to this node:

 The Rules Obtained table displays the discovered rules for predicting the target levels of the target
variable. The order in which the rules are presented in this table is important and helps in the
interpretation of the results. The first rule, “undisclosed,” was trained by using all of the data. The
second rule, “tender offer,” was trained on the data that did not satisfy the first rule. Subsequent
rules, such as “acquire & ~cts & ~crude,” are learned only after removing any observations that
satisfy previous rules. The fit statistics to the right of each rule are cumulative and represent totals
that include using that particular rule along with all of the previous rules in the table.

 The Rule Success graph shows the effectiveness of each generated rule on the training and vali-
dation data. In this graph, the rules on the Y axis are labeled with their rule number and the partition
type. Within the partition, the rules are presented in the order in which they appear in the Rules
Obtained table. The stacked bar to the side of each rule indicates the distribution of the target
levels for the set of documents that satisfy the rule. Each bar shows you how effective the particular
rule is and provides a visual indication of the correct target level for the false positives that the rule
has incorrectly categorized.

Figure 2. Text Rule Builder Properties

9

Figure 3. Result Diagrams of Text Rule Builder Node

PERFORMANCE EXAMPLE

The HPBOOLRULE procedure implements very efficient data structures to handle sparse data and can
support multithreading for parallel processing when your machine has multiple cores. You can use the
procedure to process very large data sets even in single-machine mode. The following example examines
the performance when the HPBOOLRULE procedure is used as the base classifier in the flat model.

EVALUATION DATA AND EXPERIMENT SETUP

The Wikipedia-Large data set5 is derived from the web pages on Wikipedia. It contains 2,365,432 docu-
ments and 2,085,167 terms. The documents are organized under a hierarchy that has 325,056 non-empty
categories. To evaluate the performance of BOOLLEAR when data are highly imbalanced, two sets of
problems are extracted from the Wikipedia-Large data set. The first problem set is named WIKI50 and
contains 10 problems, each of which has 50 positive documents and 2,365,382 negative documents. The
data of each problem are further split into training, validation, and test data sets. Each of the validation and
test data sets has 5 positive documents and 50 negative documents, and the remaining documents are put
in the training data set. The second problem set is named WIKI500 and also contains 10 problems, each
of which has 500 positive documents and 2,364,932 negative documents. The data of each problem are
further split into training, validation, and test data sets. Each of the validation and the test data sets has 50
positive documents and 500 negative documents, and the remaining documents are put in the training data
set. In each problem set, documents are represented as a sparse vector of 2,085,167 dimensions. There-
fore, the whole corpus forms a 2,365,432 × 2,085,167 sparse matrix and is stored in a SAS file in the
coordinate list (COO) format. The label information is stored separately in SAS files in relational format.

Two types of base classifiers are used in the flat model. One is BOOLLEAR, which is implemented in the
HPBOOLRULE procedure. The other is BOOLLEAR_H, a classifier that is derived from BOOLLEAR and

5 http://lshtc.iit.demokritos.gr/files/second/datasets/wikipediaLarge2.0.tar.gz

10

that enables you to use hierarchy information to improve categorization accuracy when positive sample
size is very small. The process for computing BOOLEAR_H is as follows:

1. Extract rules for the leaf node, its parent node, and its grandparent node on training data. If a node
has multiple parents or grandparents, randomly choose one of each.

2. Build a meta-classifier based on the rule sets that are extracted for the leaf node, its parent node,
and its grandparent node, as follows:

a. Use the rule sets to predict on the validation data, which results in three sets of predictions.

b. Construct meta-training data by taking the three sets of predictions as three meta-features
and taking the true labels of the validation data as the targets. Use the LOGISTIC proce-
dure to build a logistic regression model on the meta-training data. Save the model.

3. Use the rule sets that are extracted for the leaf node, its parent node, and its grandparent node to
do prediction on the test data and generate three sets of predictions.

4. Apply the meta-classifier that was generated in step 2 on the three sets of predictions that were
obtained in step 3 to generate the final prediction of each test document.

5. Output the final prediction.

When the size of the validation data is small, the logistic regression model that is built in step 2b might not
be reliable. If you have more than one leaf node to model, you can use the following strategy to increase
the size of the training data for building the meta-classifier:

1. Combine the meta-training data that are constructed for each leaf node. If you have k categories
and there are p samples in each set of meta-training data, the combined meta-training data will
have k*p samples. Each sample has three meta-features.

2. Use the LOGISTIC procedure to build a logistic regression model.

3. All the categories share the same meta-classifier for final scoring.

For each category, BOOLEAR_H needs to extract three rule sets instead of just one. Therefore, BOOL-
EAR_H is more computationally intensive than BOOLLEAR. However, BOOLEAR_H incorporates the in-
formation that is contained in the upper levels of the hierarchies, which might be very helpful when the
number of positive documents is very small in the category.

PERFORMANCE OBSERVATIONS

BOOLLEAR and BOOLLEAR_H have been tested on the WIKI50 and WIKI500 problem sets. Linear sup-
port vector machine (SVM) is a powerful modeling tool for text categorization and is used as a baseline in
the experiment.6 The micro-average F1 and the macro-average F1 are used to measure the performance
of algorithms. To compute the micro-average F1, your first compute the TP, FP, TN, and FN on each prob-
lem, average them, and then use the averaged TP, FP, TN, and FN to compute the F1 measure. To com-
pute the macro-average F1, you first compute F1 for each problem and then average the individual F1
measures to obtain the macro-average F1 measure. The micro-average F1 and the macro-average F1
enable you to measure the performance of a classifier when it is applied to multiple problems. For BOOL-
LEAR, BOOLLEAR_H, and SVM, default parameters are used for model fitting. Table 1 shows the perfor-
mance of the flat model when different base classifiers are used. The results reported in Table 1 are ob-
tained on a Windows server that has two Intel Xeon L5530 CPUs and 64 GB of memory. In the experiment,
the HPBOOLRULE procedure takes about 26 seconds on average to solve a problem.

The results presented in Table 2 show that on both WIKI50 and WIKI500, BOOLLEAR and BOOLLEAR_H
obtained better performance than SVM. The 10 problems defined in WIKI50 and in WIKI500 are highly
imbalanced, which makes them hard for SVM to handle. In contrast, BOOLLEAR and BOOLEAR_H are
less sensitive to skewed data. BOOLLEAR_H achieves a better performance than BOOLLEAR on WIKI50,
but not on WIKI500. This suggests that when the number of positive samples is very small, the information

6 LIBLINEAR is used in the experiment. http://www.csie.ntu.edu.tw/~cjlin/liblinear/

11

obtained from upper levels of the hierarchy can help improve performance. But when the number of positive
samples is relatively large, BOOLLEAR can obtain enough information and reliably model the category, so
the information obtained from upper levels of the hierarchy becomes less useful. Experiment results show
that BOOLLEAR is very effective for modeling imbalanced text data. And when positive sample size is
small, incorporating information from the upper levels of the hierarchy can help improve performance.

Algorithms
WIKI50 WIKI500

micro F1 macro F1 micro F1 macro F1

BOOLLEAR 0.692308 0.639295 0.77193 0.76888

BOOLLEAR_H 0.719101 0.704642 0.77193 0.76888

Linear SVM 0.621622 0.544379 0.67470 0.67320

Table 2. Performance of the Flat Model When Different Base Classifiers Are Used

CONCLUSION

Hierarchical text categorization poses challenges when you categorize a large-scale text corpus that is
organized under a complicated taxonomy. This paper introduces a novel technique, named BOOLLEAR,
for text categorization. BOOLLEAR is implemented in the HPBOOLRULE procedure and in the SAS Text
Miner Text Rule Builder node. BOOLLEAR is very efficient and performs robustly even when data are highly
imbalanced and the number of positive samples is very small. BOOLLEAR can be used as a base classifier
in the flat model and provides a powerful way for you to categorize large-scale hierarchical text corpora.
Experiments fully demonstrate the effectiveness of BOOLLEAR for hierarchical text categorization.

12

REFERENCES

Cox, J., and Zheng, Z. 2014. System for efficiently generating k-maximally predictive association rules with a given
consequent. US Patent 20140337271.

Manning, C. D., Raghavan, P., and Schütze, H. 2008. Introduction to Information Retrieval. Cambridge: Cambridge
University Press.

Soka, R. R., and Rohlf, F. J. 1994. Biometry: The Principles and Practice of Statistics in Biological Research. New

York: W. H. Freeman.

ACKNOWLEDGMENTS

The authors would like to thank Anne Baxter for her editorial contributions.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Zheng Zhao James Cox Russell Albright Ning Jin

SAS Institute Inc.

SAS Campus Drive

Cary, NC, 27513

Zheng.Zhao@sas.com

SAS Institute Inc.

SAS Campus Drive

Cary, NC, 27513.

James.Cox@sas.com

SAS Institute Inc.

SAS Campus Drive

Cary, NC, 27513

Russell.Albright@sas.com

SAS Institute Inc.

SAS Campus Drive

Cary, NC, 27513

Ning.Jin@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of
their respective companies

