
SAS® Event Stream
Processing 3.2
User’s Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS® Event Stream Processing 3.2: User's Guide. Cary,
NC: SAS Institute Inc.

SAS® Event Stream Processing 3.2: User's Guide

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19
(DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to
the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

November 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

About This Book . ix
What’s New in SAS Event Stream Processing . xi

Chapter 1 • Overview to SAS Event Stream Processing . 1
Product Overview . 1
Getting Started with SAS Event Stream Processing . 2
Writing an Application with SAS Event Stream Processing . 8

Chapter 2 • Understanding Event Stream Processing Modeling Objects 11
Designing an Event Stream Processing Application . 11
What is an Event Stream Processing Model? . 12
Understanding Events . 13
Understanding Event Blocks . 15
Implementing Engines . 15
Understanding Projects . 16
Understanding Continuous Queries . 17
Understanding Windows . 18

Chapter 3 • Using Expressions . 21
Overview to Expressions . 21
Understanding Data Type Mappings . 22
Using Event Metadata in Expressions . 22
Using DataFlux Expression Language Global Functions . 23
Using Blue Fusion Functions . 24

Chapter 4 • Using the XML Layer . 25
Using the XML Server . 26
Sending HTTP Requests to the XML Server . 27
Using the XML Client . 41
Validating Your XML Code . 50
XML Language Elements . 51
XML Code Examples . 99

Chapter 5 • Using SAS Event Stream Processing Studio . 103
Overview to SAS Event Stream Processing Studio . 103
Using SAS Event Stream Processing Studio . 103
Example: Creating an Aggregation Model . 105
Example: Creating a Compute Model . 111
Example: Creating a Copy with Slots Model . 115
Example: Creating a Filter Model . 121
Example: Creating a Join Model . 125
Example: Creating a Pattern Model . 130

Chapter 6 • Programming with the C++ Modeling API . 139
Overview to the C++ Modeling API . 139
Dictionary . 140

Chapter 7 • Creating Aggregate Windows . 165
Overview to Aggregate Windows . 165

Flow of Operations . 166
Using Aggregate Functions . 166
XML Examples of Aggregate Windows . 176

Chapter 8 • Creating Counter Windows . 179
Overview to Counter Windows . 179
Examples . 180

Chapter 9 • Creating Functional Windows . 183
Overview to Functional Windows . 183
Using Event Loops . 183
Understanding and Using Function Context . 184
Functional Window Examples . 189

Chapter 10 • Creating Join Windows . 191
Overview to Join Windows . 191
Understanding Streaming Joins . 192
Creating Empty Index Joins . 195
Examples of Join Windows . 196

Chapter 11 • Creating Notification Windows . 199
Overview to Notification Windows . 199
Notification Window Delivery Channels . 201
Using the Function-Context Element . 204
Examples of Notification Windows . 207

Chapter 12 • Creating Pattern Windows . 215
Overview of Pattern Windows . 215
State Definitions for Operator Trees . 218
Restrictions on Patterns . 220
Using Stateless Pattern Windows . 222
Enabling Pattern Compression . 222
Enabling the Heartbeat Interval . 223
Pattern Window Examples . 223

Chapter 13 • Creating Procedural Windows . 231
Overview to Procedural Windows . 231
Using C++ Window Handlers . 232
Using DS2 Window Handlers . 234
DATA Step Window Handlers . 238
XML Examples of Procedural Windows . 241

Chapter 14 • Advanced Window Operations . 243
Implementing Periodic (or Pulsed) Window Output . 243
Splitting Generated Events across Output Slots . 244
Marking Events as Partial-Update on Publish . 246
Understanding Retention . 248
Understanding Primary and Specialized Indexes . 250
Persist and Restore Operations . 257
Gathering and Saving Latency Measurements . 259
Enabling Finalized Callback . 262

Chapter 15 • Using the Publish/Subscribe API . 263
Overview to the Publish/Subscribe API . 263
Understanding Publish/Subscribe API Versioning . 264
Using the C Publish/Subscribe API . 265

iv Contents

Using the Java Publish/Subscribe API . 282
Publish/Subscribe API Support for Google Protocol Buffers 288
Publish/Subscribe API Support for JSON Messaging . 291
Publish/Subscribe API Support for XML Messaging . 293

Chapter 16 • Using Connectors . 295
Overview to Using Connectors . 296
Using the Database Connector . 300
Using File and Socket Connectors . 308
Using the IBM WebSphere MQ Connector . 314
Using the PI Connector . 316
Using the Project Publish Connector . 320
Using the Rabbit MQ Connector . 320
Using the SMTP Subscribe Connector . 326
Using the Sniffer Publish Connector . 327
Using the Solace Systems Connector . 330
Using the Teradata Connector . 334
Using the Tervela Data Fabric Connector . 336
Using the Tibco Rendezvous (RV) Connector . 341
Writing and Integrating a Custom Connector . 344

Chapter 17 • Using Adapters . 347
Overview to Adapters . 347
Using the Database Adapter . 349
Using the Event Stream Processor Adapter . 351
Using the File and Socket Adapter . 352
Using the IBM WebSphere MQ Adapter . 355
Using the HDAT Reader Adapter . 357
Using the HDFS (Hadoop Distributed File System) Adapter 358
Using the Java Message Service (JMS) Adapter . 361
Using the SAS LASR Analytic Server Adapter . 365
Using the PI Adapter . 367
Using the Rabbit MQ Adapter . 369
Using the REST Subscriber Adapter . 371
Using the SAS Data Set Adapter . 373
Using the SMTP Subscriber Adapter . 376
Using the Sniffer Publisher Adapter . 377
Using the Solace Systems Adapter . 379
Using the Teradata Subscriber Adapter . 381
Using the Tervela Data Fabric Adapter . 383
Using the Tibco Rendezvous (RV) Adapter . 385
Using the Twitter Publisher Adapter . 387

Chapter 18 • Enabling Encryption on Socket Connections . 393
Overview to Enabling Encryption . 393
Understanding SSL Certificate Requirements . 394
Understanding the SSL Handshake Process . 394

Chapter 19 • Visualizing Event Streams . 395
Overview to Event Visualization . 395
Using Streamviewer . 395

Chapter 20 • Enabling Guaranteed Delivery . 397
Overview to Guaranteed Delivery . 397
Guaranteed Delivery Success Scenario . 399
Guaranteed Delivery Failure Scenarios . 400

Contents v

Additions to the Publish/Subscribe API for Guaranteed Delivery 400
Configuration File Contents . 401

Chapter 21 • Implementing 1+N-Way Failover . 403
Overview to 1+N-Way Failover . 403
Topic Naming . 406
Failover Mechanisms . 407
Restoring Failed Active ESP State after Restart . 411
Using ESP Persist/Restore . 411
Message Sequence Numbers . 411
Metadata Exchanges (Rabbit MQ and Solace) . 412
Metadata Exchanges (Tervela) . 412
Required Software Components . 413
Required Client Configuration . 413
Required Appliance Configuration (Rabbit MQ) . 413
Required Appliance Configuration (Solace) . 413
Required Appliance Configuration (Tervela) . 414

Chapter 22 • Running an Event Stream Processing Engine in a Hadoop YARN Container . 415
Overview to YARN . 415
Starting the Server in the Hadoop YARN Container . 415
Managing the Event Stream Processing Server . 417
Connecting to an Event Stream Processing Server . 418

Chapter 23 • Using Design Patterns . 419
Overview to Design Patterns . 419
Design Pattern That Links a Stateless Model with a Stateful Model 420
Controlling Pattern Window Matches . 421
Augmenting Incoming Events with Rolling Statistics . 422

Chapter 24 • Changing Models Dynamically . 425
Overview . 425
Safeguards . 425
Window Modifications . 426
Restrictions . 427

Chapter 25 • Using the Apache Camel Framework . 429
Overview . 429
Installing the Apache Camel Framework . 430
Installing the RabbitMQ Library . 431
SAS Event Stream Processing Implementation . 431
Using Camel Components in a Maven Project . 433
Configuring Endpoints . 433
Using Transformation Beans . 435
Examples . 436

Chapter 26 • Authenticating Clients . 439
Overview . 439
Server Requirements . 440
Client Requirements . 440
Token Validation . 441
CF UAA Client/Server Information . 442

Chapter 27 • Implementing a K-means Clustering Learning Model . 443
Overview . 443
Parameters . 443

vi Contents

Appendix 1 • Interpreting Event Codes . 445

Appendix 2 • Performance Tips . 447

Appendix 3 • Functional Window and Notification Window Support Functions 449
Dictionary . 451

Appendix 4 • Example: Using a Reserved Word to Obtain an Opcode to Filter Events 501

Appendix 5 • Example: Using DataFlux Expression Language Global Functions 505

Appendix 6 • Example: Using Blue Fusion Functions . 511

Appendix 7 • Setting the Logging Level . 515

Recommended Reading . 519
Glossary . 521
Index . 523

Contents vii

viii Contents

About This Book

Audience

This document provides information for event stream processing application developers
and users to use SAS Event Stream Processing. It assumes knowledge of object-oriented
programming terminology and a solid understanding of object-oriented programming
principles. It also assumes a working knowledge of the SQL programming language and
of relational database principles.

Use this document with the application programming interface (API) HTML
documentation that is shipped with the product. That documentation is generated from
product code, and provides a complete reference to programming objects.

ix

x About This Book

What’s New in SAS Event Stream
Processing

Overview

SAS Event Stream Processing 3.2 provides the following enhancements:

• new way to write input handlers

• new compression for pattern windows

• new functionality for user-defined callback functions

• redesigned HTTP API

• optional authentication now available

• new persist and recover support to window types

• new integration with Hadoop YARN

• new support for dynamic event stream processing models

• new learning models provided through k-means clustering

• enhancements to SAS Event Stream Processing Studio

• new connectors and adapters

• changes to connectors and adapters

New Way to Write Input Handlers

You now write event stream input handlers using DATA step statements. When executed,
these input handlers call out to an existing instance of Base SAS. This new way extends
the supported languages for procedural window input handlers (C++, DS2, and the
DATA step).

For more information, see “DATA Step Window Handlers”.

New Compression for Pattern Windows

Active pattern instances keep copies of the events that have made them change state.
These copies include the first event of the pattern. Keeping these copies can result in an

xi

increased memory footprint. To ameliorate this problem, pattern windows can now use
compression.

Compression comes with a minor performance cost. Events are maintained so that the
pattern output definition can reference fields in the compressed events, potentially to
establish causality for pattern alerts.

For more information, see “Enabling Pattern Compression”.

New Functionality for User-defined Callback
Functions

You can now register a user-defined callback function for any window that is called
when the window is instantiated before it processes any events. This enables an event
stream processing application to initialize some state or connection before events start
flowing into the window.

Redesigned HTTP API

The HTTP application programming interface (API) was redesigned to comply with a
more rigorous set of SAS REST standards. For more information, see “Sending HTTP
Requests to the XML Server”.

Note: You must update existing HTTP requests to the XML server HTTP interface in
order to use this new API.

Optional Authentication Now Available

Optional authentication was added to all of the product’s network interfaces used in
production:

• to the XML server API. The SAS oAuth library is now used to provide flexible
authentication options to the interface to the XML server. For more information, see
“Using the XML Server”.

• to the Java Publish/Subscribe API, C Publish/Subscribe API, and adapters. The SAS
oAuth library is now used to provide flexible authentication options to publishing
and subscribing clients. For more information, see "Authenticating Clients".

Authentication has not been added to SAS Event Stream Processing Studio. That tool is
intended to create and test new models before they are deployed to production.

xii What’s New in SAS Event Stream Processing

New Persist and Recover Support to Window
Types

Persist and recover support was added to the following window types that had been
added to the product in SAS Event Stream Processing 3.1:

• counter windows. For more information, see "Creating Counter Windows".

• functional windows. For more information, see "Creating Functional Windows".

• notification windows. For more information, see "Creating Notification Windows" .

• textClassification windows

• textSentiment windows

This addition ensures that all window types support persist and recover.

New Integration with Hadoop YARN

Prior to SAS Event Stream Processing 3.2, the Hadoop adapters provided by the product
worked with CSV and HDAT in order to enable Hadoop to publish and subscribe to
event stream processing engines. In SAS Event Stream Processing 3.2, the product is
more tightly integrated with Hadoop through YARN. Now, event stream processing
engine instances can be dynamically created on the compute layer of Hadoop.

For more information, see "Running an Event Stream Processing Engine in a Hadoop
YARN Container".

New Support for Dynamic Event Stream
Processing Models

The XML server REST API was extended to support submitting changed project models
to a running XML server. These changes can include inserted windows, deleted
windows, and updated windows. You can make these changes without bringing a
running project down. This maintains as much existing state as feasible. However,
updates to windows lose state.

For more information, see "Changing Models Dynamically".

New Learning Models Provided through K-means
Clustering

K-means clustering was added as a new example that could be used to enable users to
leverage these algorithms. One window in this example continuously trains the

New Learning Models Provided through K-means Clustering xiii

clustering knowledge, which is used by another window to score new events relative to a
given cluster.

For more information, see "Learning Models Through K-means Clustering".

Enhancements to SAS Event Stream Processing
Studio

Enhancements to SAS Event Stream Processing Studio are as follows:

• New embedded user assistance is available.

• When you export a model to an XML file, you now can select the output directory.

• You now can tell whether a window is stateful or stateless.

• Connectors to join windows are now labeled “left” and “right.”

• There is a new output schema editing interface for Compute and Join windows. It
enables you to edit the entire output schema in a single place and copy fields from
other windows.

• You can add finalized-callback functions at the window-level.

• The following changes were made at the project-level:

• The action attribute was removed.

• The heartbeat-interval and compress-open-patterns attributes were added.

For more information about SAS Event Stream Processing Studio, see "Using SAS
Event Stream Processing Studio".

New Connectors and Adapters

New connectors and adapters are as follows:

• The Oracle log sniffer adapter can monitor updates, inserts, and deletes to an Oracle
table and publish them into an event stream processing engine. This adapter uses
replication services to monitor the updates.

• The Greenplum log sniffer adapter can monitor updates, inserts, and deletes to a
Greenplum table and publish them into an event stream processing engine. This
adapter uses a history table to monitor the updates.

• The Camel adapter enables SAS Event Stream Processing deployments to use the
Camel framework to access JAVA endpoints. These endpoints currently consist of
approximately 150 formats, protocols, or systems. The new adapter also provides
failover support and orchestration. For more information, see "Using the Apache
Camel Framework".

xiv What’s New in SAS Event Stream Processing

Changes to Connectors and Adapters

For more information about connectors, see "Using Connectors". For more information
about adapters, see "Using Adapters".

Change to the Default Opcode
For the following connectors and adapters, the default opcode is now Insert rather than
Upsert:

• Database

• File and Socket

• WebSphere MQ

• PI

• Rabbit MQ

• Sniffer Publisher

• Tibco RV

• SAS Data Set

• HDAT Reader

• Java Message Service (JMS)

• SAS LASR Analytic Server

• Twitter Publisher

Use the publishwithupsert parameter to these connectors and adapters to publish
with Upsert instead of Insert.

Note: Applications and XML models that require Upsert events from publishers must
update connectors and adapters to use the publishwithupsert parameter.

Additional Levels of Support
• The SAS LASR Analytical Server adapter is now supported on Microsoft Windows

systems when it runs remotely from a SAS LASR Analytic Server.

• Workspace Server password decryption for the SAS Data Set adapter is now
supported on Microsoft Windows. You can use an optional switch to the adapter to
provide passwords in unencrypted form.

• There is now support for multiple comma-separated items in the
hdatmaxstringlength parameter, which is used by the File and Socket
subscriber connector and adapter writing SAS HDAT files to HDFS. This support
enables variable string lengths on different columns in the HDAT file.

• The JMS adapter now supports encrypted passwords.

• Support to transport JSON has been added to Solace Systems publish/subscribe
clients.

Additional Levels of Support xv

• The Sniffer connector and adapter now has the ability to capture the payload of any
TCP or UDP traffic on any specified port. It can also capture IP source and
destination traffic, TCP or UDP source ports, and TCP or UDP destination ports.
Previously, you could capture only specific fields of the payload, and a limited list of
ports were supported.

• Support for JSON_TRUE and JSON_FALSE types has been added to the JSON
library that is used by connectors and adapters.

• The C_dfESPpubsubPingHostPort()and pingHostPort() elements have
been added to the C and Java publish/subscribe APIs.

New Parameters
The following new parameters have been added.

Parameter Description

csvfielddelimiter Has been added to the File and Socket, WebSphere MQ,
Rabbit MQ, Tibco RV, JMS, and HDFS publisher
connectors and adapters. This parameter specifies the
character delimiter for field data in input CSV events when
the delimiter is not the default ‘,’ character.

noautogenfield Has been added to the File and Socket, WebSphere MQ,
Rabbit MQ, Tibco RV, JMS, and HDFS publisher
connectors and adapters. This parameter specifies that input
events are missing the key field that is autogenerated by the
source window.

ackwindow

acktimer

Have been added to the Rabbit MQ publisher connector and
adapter to enable periodic acknowledgment of messages
back to Rabbit MQ when buspersistence is enabled.

noautoack Has been added to the Rabbit MQ client subscriber. Using
this parameter requires the subscriber to explicitly
acknowledge messages, such that failed messages remain
on the Rabbit MQ queue.

indexfieldname Has been added to the sniffer publisher connector and
adapter to make the index field name configurable.

maxnumthreads Has been added to the REST subscriber adapter. This
parameter limits the number of concurrent connections to
the REST service.

addcsvopcode

addcsvflags

Have been added to the File and Socket publisher connector
and adapter. These parameters specify the opcode and flag
values to add to input CSV that is missing in fields.

opaquestring This message format has been added to the WebSphere
MQ, Rabbit MQ, Tibco RV, and JMS publisher connectors
and adapters. This message format specifies that the ASCII
input data received from the message bus is injected into
the source window unmodified.

xvi What’s New in SAS Event Stream Processing

Parameter Description

pcapfilter Has been added to the Sniffer Publisher connector and
adapter to specify a pcap filter expression to be used by the
pcap driver.

New Parameters xvii

xviii What’s New in SAS Event Stream Processing

Chapter 1

Overview to SAS Event Stream
Processing

Product Overview . 1

Getting Started with SAS Event Stream Processing . 2
Installing and Configuring SAS Event Stream Processing . 2
Updating SAS Event Stream Processing Release 3.1 to Release 3.2 4
Uninstalling SAS Event Stream Processing . 6
Using SAS Event Stream Processing . 7
Open SAS Event Stream Processing Studio . 8
Viewing Logs . 8

Writing an Application with SAS Event Stream Processing 8

Product Overview
SAS Event Stream Processing enables programmers to build applications that can
quickly process and analyze a large number of continuously flowing events.
Programmers can build applications using SAS Event Stream Processing Studio, the
XML Layer, or the C++ Modeling API that are included with the product. Event streams
are published in applications using the C or JAVA publish/subscribe APIs, connector
classes, adapter executables, Streamviewer, or SAS Event Stream Processing Studio.

Event stream processing engines with dedicated thread pools can be embedded within
new or existing applications. The XML client can be used to feed event stream
processing engine definitions (called projects) into an event stream processing XML
server.

Event stream processing applications typically perform real-time analytics on streams of
events. These streams are continuously published into an event stream processing
engine. Typical use cases for event stream processing include but are not limited to the
following:

• capital markets trading systems

• fraud detection and prevention

• sensor data monitoring and management

• cyber security analytics

• operational systems monitoring and management

• personalized marketing

1

Event stream processing enables the user to analyze continuously flowing data over long
periods of time where low latency incremental results are important.

Getting Started with SAS Event Stream
Processing

Installing and Configuring SAS Event Stream Processing
SAS Event Stream Processing supports Linux and Microsoft Windows operating
environments.

Instructions to configure SAS Event Stream Processing are provided in a ReadMe file
that is available in your software depot. This file provides links to system requirements
and to customer documentation.

Note: If you want to preserve files from a previous release of SAS Event Stream
Processing, rename the associated directories.

Use SAS Deployment Wizard to install SAS Event Stream Processing.

1. Start SAS Deployment Wizard from your SAS Software Depot. On a Linux system,
run setup.sh at the command prompt. On a Microsoft Windows system, run
setup.exe.

2. In the Choose Language dialog box, select the language for the SAS Deployment
Wizard. Click OK.

3. In the Select Deployment Task step, select Install SAS Software. Click Next.

4. If you have multiple products in your software depot, select the SAS Event Stream
Processing package on the Select SAS Software Order step.

If SAS Event Stream Processing is the only product in your software depot, this step
does not occur.

5. In the Specify SAS Home step, select the SASHome directory or create a new SAS
Home.

6. In the Select Products to Install step, clear all.

Select the SAS Event Stream Processing Authentication and Encryption,SAS
Event Stream Processing Engine, and SAS Event Stream Processing Studio
check boxes. Click Next.

Note: The availability of SAS Event Stream Processing Authentication and
Encryption is restricted to certain countries.

7. Depending on your order, you might need to specify the full path to the SAS
installation data file and specify regional settings. Click Next.

8. In the Configure SAS Event Stream Processing Studio step, leave the Configure
SAS Event Stream Processing Studio check box selected in order to configure the
package. Click Next.

9. In the SAS Event Stream Processing Studio Configuration Directory step, specify the
directory to use.

2 Chapter 1 • Overview to SAS Event Stream Processing

Here, the directory /opt/sas/ESPStudioConfig is specified for a Linux
configuration.

Click Next.

10. In the SAS Event Stream Processing Studio Ports step, specify the ports to be used
by the SAS Web Application Server.

Click Next.

11. In the Checking System step, click Next when the checking process is complete.

12. In the Deployment Summary step, click Start.

13. In the Deployment Complete step, click Next.

Getting Started with SAS Event Stream Processing 3

14. Carefully review the information in the Additional Resources step. When finished,
click Finish to close the SAS Deployment Wizard.

The EventStreamProcessingStudioInstructions.html file explains how to
start and stop the SAS Event Stream Processing Studio web application server. It also
specifies the URL to use in order to access SAS Event Stream Processing Studio. This
file is located in the documents subdirectory of the SAS Event Stream Processing
Studio configuration directory.

You can use the SAS Deployment Manager to uninstall SAS Event Stream Processing
Studio. Before you do, you must stop running event stream processing processes.

Updating SAS Event Stream Processing Release 3.1 to Release 3.2
Use SAS Deployment Wizard to update SAS Event Stream Processing release 3.1 to
release 3.2. You must complete two passes through the SAS Deployment Wizard: one to
install SAS Event Stream Processing Studio and the other to install the rest of the
product.

1. Start SAS Deployment Wizard from your SAS Software Depot. On a Linux system,
run setup.sh at the command prompt. On a Microsoft Windows system, run
setup.exe.

2. In the Choose Language dialog box, select the language for the SAS Deployment
Wizard. Click OK.

3. In the Select Deployment Task step, select Install SAS Software. Click Next.

4. If you have multiple orders in your software depot, select the SAS Event Stream
Processing package on the Select SAS Software Order step.

If SAS Event Stream Processing is the only order in your software depot, this step
does not occur.

5. In the Specify SAS Home step, select the SASHome directory or create a new SAS
Home.

6. In the Review Required Updates step, ensure that version 3.1 appears as Installed
and 3.2 appears as Updated. Click Next.

7. In the Configure SAS Event Stream Processing Studio step, leave the Configure
SAS Event Stream Processing Studio check box selected in order to configure the
package. Click Next.

8. In the SAS Event Stream Processing Studio Configuration Directory step, specify the
directory to use.

4 Chapter 1 • Overview to SAS Event Stream Processing

By default, the directory /sas/ESPStudioConfig/ is specified for a Linux
configuration. It is recommended that you append a version-specific subdirectory to
this directory (/sas/ESPStudioConfig/3.2.0/

Click Next.

9. In the SAS Event Stream Processing Studio Ports step, specify the ports to be used
by the SAS Web Application Server.

Click Next.

10. In the Checking System step, click Next when the checking process is complete.

11. In the Deployment Summary step, click Start.

12. In the Deployment Complete step, click Next.

Getting Started with SAS Event Stream Processing 5

13. Carefully review the information in the Additional Resources step. When finished,
click Finish to close the SAS Deployment Wizard.

You must restart SAS Deployment Wizard to install the rest of the product:

1. Start SAS Deployment Wizard from your SAS Software Depot. On a Linux system,
run setup.sh at the command prompt. On a Microsoft Windows system, run
setup.exe.

2. In the Choose Language dialog box, select the language for the SAS Deployment
Wizard. Click OK.

3. In the Select Deployment Task step, select Install SAS Software. Click Next.

4. If you have multiple orders in your software depot, select the SAS Event Stream
Processing package on the Select SAS Software Order step.

If SAS Event Stream Processing is the only order in your software depot, this step
does not occur.

5. In the Specify SAS Home step (which only appears in a Microsoft Windows
environment if this is the first SAS product to be installed) select the SASHome
directory or create a new SAS Home.

6. In the Select Products to Install step, clear all.

Select the SAS Event Stream Processing Authentication and Encryption and
SAS Event Stream Processing Engine check boxes. Click Next.

Note: The availability of SAS Event Stream Processing Authentication and
Encryption is restricted to certain countries.

7. Depending on your order, you might need to specify the full path to the SAS
installation data file and specify regional settings. Click Next.

8. In the Checking System step, click Next when the checking process is complete.

9. In the Deployment Summary step, click Start.

10. In the Deployment Complete step, click Next.

11. Carefully review the information in the Additional Resources step. When finished,
click Finish to close the SAS Deployment Wizard.

Uninstalling SAS Event Stream Processing
Use the SAS Deployment Manager to uninstall SAS Event Stream Processing.

1. Log on as the SAS Installer, an administrator, or a user in the Administrators group.

2. Stop the SAS Web Application Server.

a. On Linux systems, run /sasespstudio.sh stop

b. On Microsoft Windows systems:

i. Navigate to Start ð Control Panel ð Administrative Tools ð Services.

ii. Stop the SAS Event Stream Processing Studio Web Application Server.

3. On the host machine for products whose configurations you are removing, navigate
to SAS-installation-directory/SASDeploymentManager/9.4.

a. On Linux systems, run sasdm.sh.

6 Chapter 1 • Overview to SAS Event Stream Processing

b. On Microsoft Windows systems, run sasdm.exe. You can use the shortcut on
the Start menu if you want.

4. Select the language that you want the SAS Deployment Manager to use.

5. On the Select Deployment Manager Task dialog box, choose Uninstall SAS
Software. Click Next.

6. On the Select SAS Products to Uninstall dialog box, all SAS products are selected.
Deselect products that you want to retain. SAS Event Stream Processing Studio
should remain selected.

Note: The SAS Event Stream Processing Engine and SAS Event Stream Processing
Authentication and Encryption products are not listed.

CAUTION:
When you uninstall all products, the SAS installation directory is deleted. This
deletes the SAS Event Stream Processing Engine and SAS Event Stream
Processing Authentication and Encryption packages.

Click Next.

7. SAS Deployment Wizard scans your system to determine whether any pre-existing
SAS files are locked or do not have Write permission. If the wizard lists files in the
text box, then while the wizard is running, quit SAS and add Write permission to the
files listed. After you have changed permissions as needed, click Next.

8. If there are any products that you want to keep, click Back. On the Select SAS
Products to Uninstall page, deselect the products. Otherwise, click Start. The
deployment manager uninstalls the selected SAS products.

9. When the Deployment Complete page appears, click Finish.

10. Navigate to your SAS installation directory and delete the
SASEventStreamProcessingEngine directory.

Using SAS Event Stream Processing
After you install SAS Event Stream Processing, you write event stream processing
applications using SAS Event Stream Processing Studio, the XML server, or the C++
Modeling API and then execute them. Sample programs in both XML and C++ are
available in the examples directory of the installation. A readme file in the examples
directory describes each example and how to run it.

To use SAS Event Stream Processing on Linux hosts, make the following changes to
your environment:

• export DFESP_HOME=!SASROOT/SASEventStreamProcessingEngine/
3.2.0

• export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$DFEESP_HOME/lib

To use SAS Event Stream Processing on Microsoft Windows hosts, make the following
change to your environment: DFESP_HOME=!SASROOT
\SASEventStreamProcessingEngine\3.2.0.

You need a valid license file in order to run any applications using SAS Event Stream
Processing. License files are ordinarily stored in etc/license. If you do not have a
license file, contact your SAS representative.

Note: If you store the license file in a different location from etc/license, you need
to modify the sample applications and change the calls to

Getting Started with SAS Event Stream Processing 7

dfESPlibrary::Initialize. For more information, see the API documentation
available in $DFESP_HOME/doc/html.

Open SAS Event Stream Processing Studio
After you have started the SAS Web Application Server, you can open SAS Event
Stream Processing Studio from a URL with the following format:

http://esp_studio_hostname:port/SASEventStreamProcessingStudio

If you do not know the host name or port, see the
EventStreamProcessingStudioInstructions.html file in your configuration directory.

Viewing Logs
The logs for the SAS Web Application Server are saved in the following directory:
configuration-directory/appserver/dfespvm/logs.

Writing an Application with SAS Event Stream
Processing

Use the modeling objects described in Chapter 2, “Understanding Event Stream
Processing Modeling Objects,” to write an event stream processing application. Follow
these steps:

1. Create an engine and instantiate it using XML server or within a C++ application.

For more information about the XML server, see Chapter 4, “Using the XML Layer,”
on page 25.

For more information about the C++ key modeling objects to use to write an
application, see Chapter 6, “Programming with the C++ Modeling API,” on page
139.

2. Publish one or more event streams into the engine using the publish/subscribe API,
connectors, adapters, SAS Event Stream Processing Studio, Streamviewer, or by
using the dfESPcontquery::injectEventBlock() method for C++ models.

You can publish and subscribe one of several ways:

• through the Java or C publish/subscribe API

• through the packaged connectors (in-process classes) or adapters (networked
executables) that use the publish/subscribe API, SAS Event Stream Processing
Studio, or Streamviewer

• using the in-process callbacks for subscribe or the inject event block method of
continuous queries

For more information about the publish/subscribe API, see Chapter 15, “Using the
Publish/Subscribe API,” on page 263.

Connectors are C++ classes that are instantiated in the same process space as the
event stream processor. Connectors can be used from within XML models or C++
models. For more information, see Chapter 16, “Using Connectors,” on page 295.

8 Chapter 1 • Overview to SAS Event Stream Processing

Adapters use the corresponding connector class to provide stand-alone executables
that use the publish/subscribe API. Therefore, they can be networked. For more
information, see Chapter 17, “Using Adapters,” on page 347.

3. Subscribe to relevant window event streams within continuous queries using the
publish/subscribe API,, connectors, adapters, SAS Event Stream Processing Studio,
Streamviewer, or using the dfESPwindow::addSubscriberCallback()
method for C++ models.

When you start a C++ event stream processing application with -b filename, the
application writes the events that are not processed because of computational failures to
the named log file. When you do not specify this option, the same data is output to
stderr. It is recommended to create logs of bad events so that you can monitor them
for new insertions.

Writing an Application with SAS Event Stream Processing 9

10 Chapter 1 • Overview to SAS Event Stream Processing

Chapter 2

Understanding Event Stream
Processing Modeling Objects

Designing an Event Stream Processing Application . 11

What is an Event Stream Processing Model? . 12

Understanding Events . 13

Understanding Event Blocks . 15

Implementing Engines . 15

Understanding Projects . 16

Understanding Continuous Queries . 17

Understanding Windows . 18

Designing an Event Stream Processing
Application

SAS Event Stream Processing enables a programmer to write applications that
continuously analyze event streams, or events in motion. Conceptually, an event is
something that happens at a determinable time that can be recorded as a collection of
fields.

When designing an event stream processing application, you must answer the following
questions:

• What event streams are published into an application, and with what protocol and
format?

• What happens to the data? That is, how are event streams transformed and analyzed?

• What are the resulting event streams of interest? What applications subscribe these
event streams, and in what format and protocol?

Your answers to these questions determine the structure of your model.

11

What is an Event Stream Processing Model?
An event stream processing model specifies how input event streams from publishers are
transformed and analyzed into meaningful resulting event streams consumed by
subscribers. The following figure depicts the model hierarchy.

Figure 2.1 The Event Stream Processing Model Hierarchy

Engine

A
da

pt
er

s

P
ub

lis
h/

S
ub

sc
rib

e
A

P
I

A
da

pt
er

s

P
ub

lis
h/

S
ub

sc
rib

e
A

P
I

Project

Continuous Query

Source Window

Derived Windows
Event
Stream
Subscribers

Connectors

Connectors

Connectors

Incoming Events

Edge

Edge4

8 9

7

5

6

1

2

3

1 At the top of the model hierarchy is the engine. Each model contains only one engine
instance with a unique name. The XML server is an engine instance.

2 The engine contains one or more projects, each uniquely named. Projects run in a
dedicated thread pool whose size is defined as a project attribute. You can specify a
port so that projects can be spread across network interfaces for throughput
scalability. Using a pool of threads in a project enables the event stream processing
engine to use multiple processor cores for more efficient parallel processing.

3 A project contains one or more continuous queries. A continuous query is
represented by a directed graph. This graph is a set of connected nodes that follow a
direction down one or more parallel paths. Continuous queries are data flows, which
are data transformations and analysis of incoming event streams.

4 Each query has a unique name and begins with one or more source windows.

5 Source windows are typically connected to one or more derived windows. Derived
windows can detect patterns in the data, transform the data, aggregate the data,
analyze the data, or perform computations based on the data. They can be connected
to other derived windows.

6 Windows are connected by edges, which have an associated direction.

7 Connectors publish or subscribe event streams to and from an engine. Connectors are
in-process to the engine.

8 The publish/subscribe API can be used to subscribe to an event stream window either
from the same machine or from another machine on the network. Similarly, the
publish/subscribe API can be used to publish event streams into a running event
stream processor project source window.

9 Adapters are stand-alone executable programs that can be networked. Adapters use
the publish/subscribe API to publish event streams to do the following:

• publish event streams to source windows

12 Chapter 2 • Understanding Event Stream Processing Modeling Objects

• subscribe to event streams from any window

.

Several objects in the modeling layers measure time intervals in microseconds. The
following intervals are measured in milliseconds:

• time-out period for patterns

• retention period in time-based retention

• pulse intervals for periodic window output

Most non-real-time operating systems have an interrupt granularity of approximately 10
milliseconds. Thus, specifying time intervals smaller than 10 milliseconds can lead to
unpredictable results.

Note: In practice, the smallest value for these intervals should be 100 milliseconds.
Larger values give more predictable results.

Understanding Events
An event is an individual record of an event stream. It is the fundamental building block
of event stream processing. It consists of metadata and field data.

The metadata consists of the following:

• an operation code (opcode)

• a set of flags (indicating whether the event is a normal, partial-update, or a retention-
generated event from retention policy management)

• a set of four microsecond timestamps that can be used for latency measurements

The following opcodes are supported by SAS Event Stream Processing:

Opcode Description

Delete (D) Removes event data from a window

Insert (I) Adds event data to a window

Update (U) Changes event data in a window

Upsert (P) Updates event data if the key field already exists. Otherwise, it adds event
data to a window.

Safe Delete (SD) Removes event data from a window without generating an error if the
event does not exist.

One or more fields of an event must be designated as a primary key. Key fields enable
the support of opcodes.

Data in an event object is stored in an internal format as described in the schema object.
All key values are contiguous and packed at the front of the event. An event object
maintains internal hash values based on the key with which it was built. In addition,

Understanding Events 13

there are functions in the dfESPeventcomp namespace for a quick comparison of
events that were created using the same underlying schema.

When publishing, if you do not know whether an event needs an Update or Insert
opcode, use Upsert. The source window where the event is injected determines whether
it is handled as an Insert or an Update. The source window then propagates the correct
event and opcode to the next set of connected windows in the model or subscribers.

When events are published into source windows, they are converted into binary code
with fast field pointers and control information. This conversion improves throughput
performance.

You can convert a file or stream of CSV events into a file or stream of binary events.
This file or stream can be published into a project and processed at higher rates than the
CSV file or stream.

CSV conversion is very CPU intensive, so it is recommended to convert files one time or
convert streams at the source. In actual production applications, the data frequently
arrives in some type of binary form and needs only reshuffling to be used in SAS Event
Stream Processing. Otherwise, the data comes as text that needs to be converted to
binary events.

To properly represent string fields in an event, the corresponding CSV string field must
follow these rules:

• When a string field includes leading or trailing white space, you must enclose the
entire string field in double quotation marks

• When a string field includes the CSV delimiter character (which is ',' by default), you
must enclose the entire string field in double quotation marks.

• You must prefix literal double quotation mark (“) characters in a string field with a
leading escape character ('\').

• You must prefix liter escape ('\') characters in a string field with a leading escape
character ('\').

For CSV conversion to binary, refer to the example application "csv2bin" under the
examples/cxx directory of the SAS Event Stream Processing installation. The
readme.examples file in $DFESP_HOME/examples explains how to use this example
in order to convert CSV files to event stream processor binary files. The example shows
you how to perform the conversion in C++ using methods of the C client API. You can
also convert using the Java client API.

The following code example reads in binary events from stdin and injects the events
into a running project. Note that only events for one window can exist in a given file. For
example, all the events must be for the same source window. It also groups the data into
blocks of 64 input events to reduce overhead, without introducing too much additional
latency.

// For windows it is essential that you read binary
// data in BINARY mode.
//
dfESPfileUtils::setBinaryMode(stdin);
 // Trade event blocks are in binary form and
 // are coming using stdin.
 while (true)
{
 // more trades exist
 // Create event block.
 ib = dfESPeventblock::newEventBlock(stdin,
 trades->getSchema());

14 Chapter 2 • Understanding Event Stream Processing Modeling Objects

 if (feof(stdin))
 break;
 sub_project->injectData(subscribeServer,
 trades, ib);
}
sub_project->quiesce(); // Wait for all input events to be processed.

Understanding Event Blocks
Event blocks contain zero or more binary events, and publish/subscribe clients send and
receive event blocks to or from the SAS Event Stream Processing. Because publish/
subscribe operations carry overhead, working with event blocks that contain multiple
events (for example, 512 events per event block) improves throughput performance with
minimal impact on latency.

Event blocks can be transactional or normal.

Event Block Description

Transactional Processing through the project is atomic. If one event in the event block
fails (for example, deleting a non-existing event), then all of the events
in the event block fail. Events that fail are logged and placed in an
optional bad records file, which can be processed further.

Normal Processing through the project is not atomic. Events are packaged
together for efficiency, but are individually treated once they are
injected into a source window.

A unique transaction ID is propagated through transformed event blocks as they work
their way through an engine model. This persistence enables event stream subscribers to
correlate a group of subscribed events back to a specific group of published events
through the event block ID.

Implementing Engines
Engines are the top level container in the event stream processing model hierarchy. Each
model contains only one engine instance with a unique name. Engines can be
instantiated as stand-alone executables or embedded within an application using the C++
modeling layer

SAS Event Stream Processing provides three modeling APIs to implement engines:

• The XML Layer enables you to define single engine definitions and to define an
engine with dynamic project creations and deletions. You can use the XML Layer
with other products such as SAS Visual Scenario Designer to perform visual
modeling.

• You can use SAS Event Stream Processing Studio to create event stream processing
models and generate XML code based on those models.

Implementing Engines 15

• The C++ Modeling API enables you to embed an event stream processing engine
inside an application process space. It also provides low-level functions that enable
an application's main thread to interact directly with the engine.

In the XML Layer, the XML server is an engine process that accepts event stream
processing definitions for projects and engines. Because the XML server is an
instantiated engine, it ignores any engine specification that you submit to it. Instead, it
instantiates the project.

You can embed event stream processing engines within application processes through
the C++ Modeling API. The application process that contains the engine can be a server
shell, or it can be a working application thread that interacts with the engine threads.

The decision to implement multiple projects or multiple continuous queries depends on
your processing needs. For the XML server, multiple projects can be dynamically
introduced, destroyed, stopped, or started because the layer is being used as a service.
For all modeling layers, multiple projects can be used for different use cases or to obtain
different threading models in a single engine instance. You can use:

• a single-threaded model for a higher level of determinism

• a multi-threaded model for a higher level of parallelism

Because you can use continuous queries as a mechanism of modularity, the number of
queries that you implement depends on how compartmentalized your windows are.
Within a continuous query, you can instantiate and define as many windows as you need.
Any given window can flow data to one or more windows. Loop-back conditions are not
permitted within continuous queries. You can loop back across continuous queries using
the project connector or adapter.

Event streams must be published or injected into source windows through one of the
following:

• the publish/subscribe API

• connectors

• adapters

• HTTP clients

• SAS Event Stream Processing Studio

• Streamviewer

• the continuous-query-inject method in the C++ Modeling API

Within a continuous query, you can define a data flow model using all of the available
window types. For a description of these window types, see Table 2.1. Procedural
windows enable you to write event stream input handlers using C++ or DS2.

Input handlers written in DS2 can use features of the SAS Threaded Kernel library so
that you can run existing SAS models in a procedural window. You can do this only
when the existing model is additive in nature and can process one event at a time.

Understanding Projects
A project specifies a container that holds one or more continuous queries and is backed
by a thread pool of user-defined size. A project can specify the level of determinism for
incremental computations. It can also specify an optional port for publish/subscribe
scalability.

16 Chapter 2 • Understanding Event Stream Processing Modeling Objects

The data flow model is always computationally deterministic. When a project is multi-
threaded, intermediate calculations can occur at different times across different project
runs. Therefore, when a project watches every incremental computation, the increments
could vary across runs even though the unification of the incremental computation is
always the same.

Note: Regardless of the determinism level specified or the number of threads used in the
engine, each window always processes all data in order. Therefore, data received by
a window is never rearranged and processed out of order.

Understanding Continuous Queries
A continuous query specifies a container that holds one or more directed graphs of
windows and that enables you to specify the connectivity between windows. The
windows within a continuous query can transform or analyze data, detect patterns, or
perform computations. Query containers provide functional modularity for large
projects. Typically, each container holds a single directed graph.

Continuous query processing follows these steps:

1. An event block (with or without atomic properties) that contains one or more events
is injected into a source window.

2. The event block flows to any derived window that is directly connected to the source
window. If transactional properties are set, then the event block of one or more
events is handled atomically as it makes its way to each connected derived window.
That is, all events must be performed in their entirety.

If any event in the event block with transactional properties fails, then all of the
events in the event block fail. Failed events are logged. They are written to a bad
records file for you to review, fix, and republish when you enable this feature.

3. Derived windows transform events into zero or more new events that are based on
the properties of each derived window. After new events are computed by derived
windows, they flow farther down the model to the next level of connected derived
windows, where new events are potentially computed.

4. This process ends for each active path down the model for a given event block when
either of the following occurs:

• There are no more connected derived windows to which generated events can be
passed.

• A derived window along the path has produced zero resulting events for that
event block. Therefore, it has nothing to pass to the next set of connected derived
windows.

For information about the XML code that you can use to implement windows, see
Chapter 4, “Using the XML Layer,”. For information about the C++ modeling
objects to implement windows, see Chapter 6, “Programming with the C++
Modeling API,”.

Understanding Continuous Queries 17

Understanding Windows
A continuous query contains a source window and one or more derived windows.
Windows are connected by edges, which have an associated direction.

SAS Event Stream Processing supports the following window types:

Table 2.1 Window Types Supported By SAS Event Stream Processing

Window type Description

Source window Specifies a source window of a continuous query. All event streams must
enter continuous queries by being published or injected into a source
window. Event streams cannot be published or injected into any other
window type.

Compute window Defines a compute window, which enables a one-to-one transformation of
input events to output events through the computational manipulation of
the input event stream fields.

You can use the compute window to project input fields from one event to
a new event and to augment the new event with fields that result from a
calculation. The set of key fields can be changed within the compute
window, but use this capability with caution. When you make a key field
change within the compute window, the new set of keys must be opcode-
compatible with the set of keys from the input streams. That is, Inserts,
Updates, and Deletes for the input events’ keys must be equivalent Inserts,
Update, and Deletes for the new key set.

Copy window Makes a copy of the parent window. Making a copy can be useful to set
new event state retention policies. Retention policies can be set only in
source and copy windows.

You can set event state retention for a copy window only when the
window is not specified to be Insert-only and when the window index is
not set to pi_EMPTY. All subsequent sibling windows are affected by
retention management. Events are deleted when they exceed the windows
retention policy.

The following figure depicts the application of a retention type on three
copy windows that branch off the same source window. The time interval
varies across the copy windows, but they all use sliding retention.

Source Window
Copy Window
Sliding Retention
10 minutes

Copy Window
Sliding Retention
5 minutes

Copy Window
Sliding Retention
15 minutes

18 Chapter 2 • Understanding Event Stream Processing Modeling Objects

Window type Description

Aggregate
window

An aggregate window is similar to a compute window in that non-key
fields are computed. An aggregate window uses the key field or fields for
the group-by condition. All unique key field combinations form their own
group within the aggregate window. All events with the same key
combination are part of the same group.

For more information, see Chapter 7, “Creating Aggregate Windows,”.

Counter window Enables you to see how many events are streaming through your model
and the rate at which they are being processed.

For more information, see Chapter 8, “Creating Counter Windows,”.

Filter window Specifies a window with a registered Boolean filter function or
expression. This function or expression determines what input events are
allowed into the filter window.

Functional
window

Enables you to use different types of functions to manipulate or transform
the data in events. Fields in a functional window can be hierarchical,
which can be useful for applications such as web analytics.

For more information, see Chapter 9, “Creating Functional Windows,”.

Join window Takes two input windows and a join type. A join window supports
equijoins that are one to many, many to one, or many to many. Both inner
and outer joins are supported.

For more information, see Chapter 10, “Creating Join Windows,” on page
191.

Notification
Window

Enables you to send notifications through email, text, or multimedia
message. You can create any number of delivery channels to send the
notifications. A notification window uses the same underlying language
and functions as the functional window.

For more information, see Chapter 11, “Creating Notification Windows,”.

Pattern window Enables the detection of events of interest. A pattern defined in this
window type is an expression that logically connects declared events of
interest.

To define a pattern window, you need to define events of interests and
then connect these events of interest using operators. The supported
operators are "AND", "OR", "FBY", "NOT", "NOTOCCUR", and "IS".
The operators can accept optional temporal conditions.

For more information, see Chapter 12, “Creating Pattern Windows,”.

Procedural
window

Enables the specification of an arbitrary number of input windows and
input handler functions for each input window (that is, event stream).

For more information, see Chapter 13, “Creating Procedural Windows,”.

Text Category
window

Enables you to categorize a text field in incoming events. A text category
window is Insert-only. The text field could generate zero or more
categories with scores.

This object enables users who have licensed SAS Contextual Analysis to
use its MCO files to initialize a text category window.

Understanding Windows 19

Window type Description

Text Context
window

Enables the abstraction of classified terms from an unstructured string
field.

This object enables users who have licensed SAS Contextual Analysis to
use its Liti files to initialize a text context window. Use this window type
to analyze a string field from an event’s input to find classified terms.
Events generated from those terms can be analyzed by other window
types. For example, a pattern window could follow a text context window
to look for tweet patterns of interest.

Text Sentiment
window

Determines the sentiment of text in the specified incoming text field and
the probability of its occurrence. The sentiment value is “positive,”
“neutral,” or “negative.” The probability is a value between 0 and 1. A
text sentiment window is Insert-only.

This object enables users who have licensed SAS Sentiment Analysis to
use its SAM files to initialize a text sentiment window.

Union window Specifies a simple join that merges one or more streams with the same
schema.

All input windows to a union window must have the same schema. The
default value of the strict flag is true, which means that the key merge
from each window must semantically merge cleanly. In that case, you
cannot send an Insert event for the same key using two separate input
windows of the union window.

When the strict flag is set to false, it loosens the union criteria by
replacing all incoming Inserts with Upserts. All incoming Deletes are
replaced with safe Deletes. In that case, deletes of a non-existent key fail
without generating an error.

20 Chapter 2 • Understanding Event Stream Processing Modeling Objects

Chapter 3

Using Expressions

Overview to Expressions . 21

Understanding Data Type Mappings . 22

Using Event Metadata in Expressions . 22

Using DataFlux Expression Language Global Functions . 23

Using Blue Fusion Functions . 24

Overview to Expressions
Event stream processing applications can use expressions to define the following:

• filter conditions in filter windows

• non-key field calculations in compute, aggregate, and join windows

• matches to window patterns in events of interest

• window-output splitter-slot calculations (for example, use an expression to evaluate
where to send a generated event)

You can use user-defined functions instead of expressions in all of these cases except for
pattern matching. With pattern matching, you must use expressions.

Writing and registering expressions with their respective windows can be easier than
writing the equivalent user-defined functions in C. Expressions run more slowly than
functions. For very low-latency applications, you can use user-defined functions to
minimize the overhead of expression parsing and processing.

Use prototype expressions whenever possible. Based on results, optimize them as
necessary or exchange them for functions. Most applications use expressions instead of
functions, but you can use functions when faster performance is critical.

For information about how to specify DataFlux expressions, refer to the DataFlux
Expression Language: Reference Guide. SAS Event Stream Processing uses a subset of
the documented functionality, but this subset is robust for the needs of event stream
processing.

Expression engine instances run window and splitter expressions for each event that is
processed by the window. You can initialize expression engines before they are used by
expression windows or window splitters (that is, before any events stream into those
windows). Each expression window and window splitter has its own expression engine
instance. Expression engine initialization can be useful to declare and initialize

21

expression engine variables used in expression window or window splitter expressions.
They can also be useful to declare regular expressions used in expressions.

To initialize expression engines for expression windows, use
dfESPexpression_window::expEngInitializeExp(). To initialize expression
engines for window splitters, use dfESPwindow::setSplitter(). You can find
examples for both types of initialization in the event stream processing installs in
$DFESP_HOME/examples/cxx. The expression window example is named
splitter_with_initexp, and the window splitter example is named regex.

Understanding Data Type Mappings
An exact data type mapping does not exist between the data types supported by the SAS
Event Stream Processing API and those supported by the DataFlux Expression Engine
Language.

The following table shows the supported data type mappings.

Table 3.1 Expression Data Type Mappings Table

Event Stream Processing
Expressions DataFlux Expressions Notes and Restrictions

String (utf8) String (utf8) None

date (second granularity) date (second granularity) Seconds granularity

timestamp (microsecond
granularity)

date (second granularity) Constant milliseconds in
dfExpressions not
supported

Int32 (32 bit) Integer (64 bit) 64-bit conversion for
dfExpressions

Int64 (64 bit) Integer (64 bit) 64-bit, no conversion

double (64 bit IEEE) real (192 bit fixed decimal) real 192-bit fixed point,
double 64-bit float

money (192 bit fixed decimal) real (192 bit fixed decimal) 192-bit fixed point, no
conversion

Using Event Metadata in Expressions
SAS Event Stream Processing provides a set of reserved words that you can use to
access an event’s metadata. You can use these reserved words in filter, compute, and join
window expressions and in window output splitter expressions. The metadata is not
available to pattern window expressions because pattern windows are insert-only.

22 Chapter 3 • Using Expressions

Reserved Word Opcode

ESP_OPCODE

Use this reserved word to obtain the opcode of
an event in a given window.

i — Insert

u — Update

p — Upsert

d — Delete

sd — Safe Delete

A safe delete does not generate a “key not
found” error.

ESP_FLAGS

Use this reserved word in expressions to get
the flags of an event in a given window.

N — Normal

P — Partial

R — Retention Delete

For an example, see Appendix 4, “Example: Using a Reserved Word to Obtain an
Opcode to Filter Events,” on page 501.

Using DataFlux Expression Language Global
Functions

The DataFlux Expression Language supports global functions, also called user-defined
functions (UDFs). You can register them as global functions and reference them from
any expression window or window splitter expression. For more information about
global functions, see DataFlux Expression Language: Reference Guide.

There are two SAS Event Stream Processing functions to which you can register global
functions:

• dfESPexpression_window::regWindowExpUDF(udfString, udfName,
udfRetType)

• dfESPwindow::regSplitterExpUDF(udfString, udfName,
udfRetType)

After you register global functions for a window splitter or an expression window, a
splitter expression or a window expression can reference the udfName. The udfName is
replaced with the udfString as events are processed.

Filter, compute, join, and pattern expression windows support the use of global
functions. Aggregate windows do not support global functions because their output
fields are create-only through aggregate functions. All windows support global functions
for output splitters on the specified window.

For an example, see Appendix 5, “Example: Using DataFlux Expression Language
Global Functions,” on page 505.

Using DataFlux Expression Language Global Functions 23

Using Blue Fusion Functions
Event stream processing expressions support the use of the DataFlux Data Management
Platform quality functions (Blue Fusion Functions). The following functions are fully
documented in the DataFlux Expression Language: Reference Guide:

• bluefusion.case

• bluefusion.gender

• bluefusion.getlasterror

• bluefusion.identify

• bluefusion_initialize

• bluefusion.loadqkb

• bluefusion.matchcode

• bluefusion.matchscore

• bluefusion.pattern

• bluefusion.standardize

To use these functions, you must separately order and download the SAS DataFlux QKB
(Quality Knowledge Base). You must set two environment variables as follows:

• DFESP_QKB to the share folder under the SAS DataFlux QKB installation. After you
have installed SAS DataFlux QKB on Linux systems, this share folder is /
QKB_root/data/ci/esp_version_number_no_dots (for example, /QKB/
data/ci/22).

• DFESP_QKB_LIC to the full file pathname of the SAS DataFlux QKB license.

After you set up SAS DataFlux QKB for SAS Event Stream Processing, you can include
these functions in any of your SAS event stream processing expressions. These functions
are typically used to normalize event fields in the non-key field calculation expressions
in a compute window.

For an example, see Appendix 6, “Example: Using Blue Fusion Functions,” on page
511.

24 Chapter 3 • Using Expressions

Chapter 4

Using the XML Layer

Using the XML Server . 26
Starting the Server . 26
Using the Server . 26

Sending HTTP Requests to the XML Server . 27
Overview . 27
Event Stream Processing Projects . 28
Running Event Stream Processing Projects . 31
Stopped Event Stream Processing Projects . 32
Event Stream Processing Windows . 33
Event Stream Processing Events . 35
Pattern Events . 37
Event Stream Processing Server . 38
Logging . 38
Connectors . 39
Project Results . 39
Project Validation Results . 40
Mapping Release 3.1 HTTP Requests to Release 3.2 HTTP Requests 40

Using the XML Client . 41
Overview to the XML Client . 41
Get the Current Model . 42
Get Event Counts . 43
Retrieve Events from a Window . 44
Reload the Model . 47
Persist the Model . 48
Start a Project . 48
Stop a Project . 48
Load a Project . 48
Delete a Project . 49
Inject Events into a Source Window . 49
Run a Project and Get Results . 49
Validate a Model . 50

Validating Your XML Code . 50

XML Language Elements . 51
Overview to XML Language Elements . 51
XML Language Elements for the Basic Structure of a Model 52
XML Language Elements That Define Window Types . 58
XML Language Elements Relevant to Notification Windows 74
XML Language Elements Relevant to Join Windows . 85

25

XML Language Elements for Events . 87
XML Language Elements for Connectors . 90
XML Language Elements for Functions . 92
XML Language Elements Relevant to the HTTP Interface 98

XML Code Examples . 99
Window-Source Example . 99
Window-Copy Example . 100
Window-Compute Examples . 100
Window-Join Examples . 101

Using the XML Server

Starting the Server
The XML server is an engine executable that instantiates and executes projects. Each
engine contains zero or more projects. The XML server supports control communication
through an HTTP interface, through which you can start, stop, create, and remove
projects. You can also publish events and query windows. The XML server supports
Insert, Update, Upsert, and Delete opcodes.

The XML server uses pi_HASH as the default primary index. You can set the primary
index at the project, continuous query, or window level.

Using the Server
To start the XML server, use the $DFESP_HOME/bin/dfesp_xml_server
command.

After starting the server, you can use it in one of two ways:

• execute it as a stand-alone engine with pre-defined projects using the -model
argument

• run it as a factory server where projects are dynamically created, started, stopped,
and destroyed using the -http-admin argument

All other command arguments are optional. If you invoke the command without
arguments, you get a usage statement.

Table 4.1 Command Arguments for the XML Server

Argument Description

-auth clientID Enables authentication using the specified clientID.

-model url Specifies the URL to the XML model. Use the URL notation for
files, specifying the full path to the XML model (file://
path).

-http-admin port Specifies the port on which to receive HTTP administration
requests.

—pubsub n Specifies the publish/subscribe port.

26 Chapter 4 • Using the XML Layer

Argument Description

-dateformat f Specifies the strptime. string

-messages dir Specifies the directory in which to search for localized message
files.

-xsd file Specifies the schema file for validation.

-plugindir dir Specifies the directory in which to search for dynamically
loaded plug-ins, defaults to plugins.

-logconfig file Specifies the SAS logging facility configuration file.

—loglevel levels Sets the initial logging level. Set level to off | trace |
debug | info | warn | error | fatal.

You can set the initial logging level for individual logging
contexts. For example:

dfesp_xml_server —loglevel
“esp=trace,common.http=debug”...

sets the level to trace for the ESP logger and to debug for the
HTTP classes.

-http-pubsub port Sets up a publish/subscribe HTTP server that uses the specified
port.

-badevents file Specifies the file to which bad events are written.

-restore path Specifies the path from which SAS Event Stream Processing
restores a project.

Sending HTTP Requests to the XML Server

Overview
You can use commands to send HTTP requests directly to the XML server. You can send
these commands through any client that is capable of formatting an HTTP request.

• a web browser

• the UNIX curl command sends HTTP requests to a web server; responses appear
on the console

You can send these commands only when you invoke $DFESP_HOME/bin/
dfesp_xml_server —http-admin port from the command line.

The resources that are available through these commands include the following:

• event stream processing projects

• running event stream processing projects

Sending HTTP Requests to the XML Server 27

• stopped event stream processing projects

• event stream processing windows

• event stream processing events

• event stream processing events that reside in open pattern instances

• the event stream processing server

• logging mechanisms

• metadata that describes available connectors

• executing a project and returning results

• validating project XML

The context name is ESP, thus making the base URI:

http://www.example.com:port/SASESP

The API responds with a standard error format to any error condition encountered during
the processing of a request. For clients that receive JSON, the error format is as shown:

{
 "errorCode": integer-error-code,
 "httpStatusCode": integer-HTTP-status code,
 "details": [
 "Additional text to describe the error",
 "There may be 0 or more detail strings"
],
 "links": [],
 "message": "error message",
 "remediation": "possible ways to remediate this error
(i.e. list missing fields, fields out of range, etc.)",
 "version": 1
}

Otherwise, the error format is as shown:

<error errorCode=integer-error-code httpStatusCode=integer-HTTP-status-code>
 <details>
 <detail>Additional text to describe the error</detail>
 <detail>There may be 0 or more detail strings</detail>
 </details>
 <links/>
 <message>error message</message>
 <remediation>Remediation message</remediation>
 <version>1</version>
</error>

Event Stream Processing Projects

Command Path Description Parameters

GET /projects Retrieve all projects in the server. schema
Boolean value that indicates
whether to include window
schema information in the
response.

28 Chapter 4 • Using the XML Layer

Command Path Description Parameters

GET /projects/projectId Retrieve the project that is
specified by projectId, if the
project exists.

schema
Boolean value that indicates
whether to include window
schema information in the
response.

GET /projects?name=...

Example:

/projects?name=Proj1|
Proj2

Retrieve the projects that are
listed in a '|' separated list of
project names. The selection
method is http://
espsrv01.unx.sas.com:18080/esp/
documentation/rest/
restSelection.html

schema
Boolean value that indicates
whether to include window
schema information in the
response.

GET /projects?filter=...

Examples:

• /projects?
filter=match(name,
'MyProj[13]')

• /projects?
filter=in(name,'My
Proj1','MyProj5')

Retrieve the projects that are
returned by the query specified in
the filter parameter. The selection
method is http://
espsrv01.unx.sas.com:18080/esp/
documentation/rest/
restFilter.html. The valid attribute
names to use in the functions are
as follows:

name - project name.

schema
Boolean value that indicates
whether to include window
schema information in the
response.

PUT /projects/projectId Create a new project named
projectId. You can specify a
projectUrl parameter that
points to the project definition. If
the parameter is not set, then the
request body is expected to
contain the project definition.

overwrite
Boolean value that indicates
whether to overwrite the
project if it already exists.

connectors
Boolean value that indicates
whether to start the
connectors.

start
Boolean value that indicates
whether to start the project.

projectUrl
Optional value pointing to a
URL containing the project
definition.

PUT /projects/projectId/
state?value=running

Set the state of the project that is
specified by projectId to
running (start the project).

PUT /projects/projectId/
state?value=stopped

Set the state of the project that is
specified by projectId to
stopped (stop the project).

Sending HTTP Requests to the XML Server 29

Command Path Description Parameters

PUT /projects/projectId/
state?value=modified

Set the state of the project that is
specified by projectId to
modified (add, modify, or delete
windows according to the
supplied XML project
definition).

You can specify a
projectUrl parameter that
points to the project definition. If
the parameter is not set, then the
request body is expected to
contain the project definition.

projectUrl
Optional value pointing to a
URL containing the project
definition.

PUT /projects/projectId/
state?value=persisted

Set the state of the project that is
specified by projectId to
persisted (save the project).

path
The path to be used to store
the project data.

PUT /projects/projectId/
state?value=restored

Set the state of the project that is
specified by projectId to
restored (restore the project).

path
The path of the data from
which the project is restored.

PUT /projects/projectId/
state?
value=connectorsStarted

Set the state of the project that is
specified by projectId to
connectorsStarted (start
the connectors for the project).

DELETE /projects Delete all projects in the server.

DELETE /projects/projectId Delete the project that is
specified by projectId, if the
project exists.

DELETE /projects?name=...

Example:

/projects?name=Proj1|
Proj2

Delete the projects that are listed
in a '|' separated list of project
names. The selection method is
http://espsrv01.unx.sas.com:
18080/esp/documentation/rest/
restSelection.html

DELETE /projects?filter=...

Examples:

• /projects?
filter=match(name,
'MyProj[13]')

• /projects?
filter=in(name,'My
Proj1','MyProj5')

Delete the projects returned by
the query that is specified in the
filter parameter. The selection
method is: http://
espsrv01.unx.sas.com:18080/esp/
documentation/rest/
restFilter.html

The valid attribute names to use
in the functions are:

name - project name.

30 Chapter 4 • Using the XML Layer

Running Event Stream Processing Projects

Command Path Description Parameters

GET /runningProjects Retrieve all running projects
in the server

schema
Boolean value that
indicates whether to
include window schema
information in the
response.

GET /runningProjects/
projectId

Retrieve the running project
that is specified by
projectId, if the project
exists.

schema
Boolean value that
indicates whether to
include window schema
information in the
response.

GET /runningProjects?
name=...

Example:

/runningProjects?
name=Proj1|Proj2

Retrieve the running projects
listed in a '|' separated list of
project names. The selection
method is http://
espsrv01.unx.sas.com:
18080/esp/documentation/
rest/restSelection.html

Retrieve the running projects
listed in a '|' separated list of
project names. The selection
method follows the standards

GET /runningProjects?
filter=...

Examples:

• /runningProjects?
filter=match(name
,'MyProj[13]')

• /runningProjects?
filter=in(name,'M
yProj1','MyProj5'
)

Retrieve the running projects
returned by the query that are
specified in the filter
parameter. The selection
method is http://
espsrv01.unx.sas.com:
18080/esp/documentation/
rest/restFilter.html

The valid attribute names to
use in the functions are:

name - project name.

Retrieve the running projects
listed in a '|' separated list of
project names. The selection
method follows the standards

POST /runningProjects Start all projects in the server.

POST /runningProjects/
projectId

Start the project specified by
projectId, if the project
exists.

POST /runningProjects?
name=...

Example:

/runningProjects?
name=Proj1|Proj2

Start the projects listed in a '|'
separated list of project
names. The selection method
is http://
espsrv01.unx.sas.com:
18080/esp/documentation/
rest/restSelection.html

Sending HTTP Requests to the XML Server 31

Command Path Description Parameters

POST /runningProjects?
filter=...

Examples:

• /runningProjects?
filter=match(name
,'MyProj[13]')

• /runningProjects?
filter=in(name,'M
yProj1','MyProj5'
)

Start the projects that are
returned by the query that is
specified in the filter
parameter. The selection
method is http://
espsrv01.unx.sas.com:
18080/esp/documentation/
rest/restFilter.html

The valid attribute names to
use in the functions are:

name - project name.

Stopped Event Stream Processing Projects

Command Path Description Parameters

GET /stoppedProjects Retrieve all stopped projects
in the server

schema
Boolean value that
indicates whether to
include window schema
information in the
response.

GET /stoppedProjects/
projectId

Retrieve the stopped project
specified by projectId, if
the project exists.

GET /stoppedProjects?
name=...

Example:

/stoppedProjects?
name=Proj1|Proj2

Retrieve the stopped projects
listed in a '|' separated list of
project names. The selection
method is http://
espsrv01.unx.sas.com:
18080/esp/documentation/
rest/restSelection.html

GET /stoppedProjects?
filter=...

Examples:

• /stoppedProjects?
filter=match(name
,'MyProj[13]')

• /stoppedProjects?
filter=in(name,'M
yProj1','MyProj5'
)

Retrieve the stopped projects
that are returned by the query
specified in the filter
parameter. The selection
method is http://
espsrv01.unx.sas.com:
18080/esp/documentation/
rest/restFilter.html

The valid attribute names to
use in the functions are:

name - project name

POST /stoppedProjects Stop all projects in the server.

32 Chapter 4 • Using the XML Layer

Command Path Description Parameters

POST /stoppedProjects/
projectId

Stop the project that is
specified by projectId, if
the project exists.

POST /stoppedProjects?
name=...

Example:

/stoppedProjects?
name=Proj1|Proj2

Stop the projects that are
listed in a '|' separated list of
project names. The selection
method is http://
espsrv01.unx.sas.com:
18080/esp/documentation/
rest/restSelection.html

POST /stoppedProjects?
filter=...

Examples:

• /stoppedProjects?
filter=match(name
,'MyProj[13]')

• /stoppedProjects?
filter=in(name,'M
yProj1','MyProj5'
)

Stop the projects that are
returned by the query
specified in the filter
parameter. The selection
method is http://
espsrv01.unx.sas.com:
18080/esp/documentation/
rest/restFilter.html

The valid attribute names to
use in the functions are:

name - project name

Event Stream Processing Windows

Command Path Description Parameters

GET /windows Retrieve all windows in the
server.

schema
Boolean value that
indicates whether to
include window schema
information in the
response.

count
Boolean value that
indicates whether to
include the number of
events contained in the
window the response.

Sending HTTP Requests to the XML Server 33

Command Path Description Parameters

GET /windows/projectId/
contqueryId/windowId

Retrieve the window
specified by projectId,
contqueryId, and
windowId.

schema
Boolean value that
indicates whether to
include window schema
information in the
response.

count
Boolean value that
indicates whether to
include the number of
events contained in the
window the response.

GET /windows?
project=...&contquery
=...&name=...&type=..
.

Examples:

• /windows?
project=MyProject
1&contquery=MyQue
ry1|MyQuery2

• /windows?
type=window-
source|window-
pattern

• /windows?
name=trades|
brokerAlerts

Retrieve the windows that
match the specified criteria.
All of the parameter values
are '|' separated lists of values.
The selection method is http://
espsrv01.unx.sas.com:
18080/esp/documentation/
rest/restSelection.html

schema
Boolean value that
indicates whether to
include window schema
information in the
response.

count
Boolean value that
indicates whether to
include the number of
events contained in the
window the response.

GET /windows?filter=...

Examples:

• /windows?
filter=and(match(
project,'My.*[13]
'),eq(name,'trade
s'))

• /windows?
filter=in(type,'w
indow-
source','window-
pattern')

Retrieve the windows that are
returned by the query
specified in the filter
parameter. The selection
method is http://
espsrv01.unx.sas.com:
18080/esp/documentation/
rest/restFilter.html

The valid attribute names to
use in the functions are:

• project - project name

• contquery -
continuous query name

• name - window name

• type - window type

schema
Boolean value that
indicates whether to
include window schema
information in the
response.

count
Boolean value that
indicates whether to
include the number of
events contained in the
window the response.

34 Chapter 4 • Using the XML Layer

Command Path Description Parameters

PUT /windows/projectId/
contqueryId/windowId/
state?value=injected

Inject events into the source
window specified by
projectId,
contqueryId, and
windowId. You can specify
an eventUrl parameter
that points to the event data.
If the parameter is not set,
then the request body is
expected to contain the event
data.

eventUrl
Optional value pointing to
a URL containing the
event data.

blocksize
Optional value specifying
the number of events per
injection block.

quiesce
Optional Boolean value
that indicates whether to
quiesce the project before
sending the response.

PUT /windows/projectId/
contqueryId/windowId/
state?value=tracingOn

Turn tracing on for the
window that is specified by
projectId,
contqueryId, and
windowId.

PUT /windows/projectId/
contqueryId/windowId/
state?
value=tracingOff

Turn tracing off for the
window that is specified by
projectId,
contqueryId, and
windowId.

Event Stream Processing Events

Command Path Description

GET /events/projectId/contqueryId/
windowId

Example:

/events/trades/tradecq/
brokerAlerts

Return all the events from the window that are
specified by projectId, contqueryId,
and windowId.

Parameters are:

start = zero-based index of the first event
to return.

limit = the number of events to return

sortBy = field:ascending |
descending

The name of the event field on which to sort
with the optional sort direction. When no sort
direction is specified, the sort is in descending
order.

Sending HTTP Requests to the XML Server 35

Command Path Description

GET /events/projectId/contqueryId/
windowId?
field1=value&field2=value&...

Examples:

• /events/trades/tradecq/
brokerAlerts?broker=1012112

• /events/trades/tradecq/
brokerAlertsAggr?
brokerName=Joe

Retrieve all events from the window that are
specified by projectId, contqueryId,
and windowId that have fields that match
the specified parameters. This is the most
efficient way to retrieve the events, because it
performs binary comparisons on event data.

Parameters are:

start = zero-based index of the first event
to return.

limit = the number of events to return

sortBy = field:ascending |
descending

The name of the event field on which to sort
with the optional sort direction. When no sort
direction is specified, the sort is in descending
order.

The selection method is http://
espsrv01.unx.sas.com:18080/esp/
documentation/rest/restFilter.html

GET /events/projectId/contqueryId/
windowId?filter=...

Examples:

• /events/project/query/
largeTrades?
filter=in(broker,
1012112,1012223)

• /events/project/query/
largeTrades?
filter=in(brokerName,'Joe',
'Lisa')

• /events/project/query/
largeTrades?
filter=and(gt(quant,
50000),gt(price,1000))

Retrieve all events that are returned by the
query specified in the filter parameter from
the window specified by projectId,
contqueryId, and windowId . The
filter query follows the standards outlined
here.

Parameters are:

start = zero-based index of the first event
to return

limit = the number of events to return

sortBy = field:ascending |
descending The name of the event field
on which to sort with the optional sort
direction. When no sort direction is specified,
the sort is in descending order.

The selection method is: http://
espsrv01.unx.sas.com:18080/esp/
documentation/rest/restFilter.html

36 Chapter 4 • Using the XML Layer

Command Path Description

GET /events?
windowFilter=...&eventFilter=...

Example:

/events?
windowFilter=in(name,'brokerA
lerts','brokersSource')&
eventFilter=eq(brokerName,'St
eve')

Return all the events from the window(s)
matching the windowFilter query that
match the eventFilter query. Both filters
are optional. Leaving either one out causes all
resources of that type (either windows or
events) to be included in the result. Both filter
queries follow the standards outlined here.

Parameters are:

start = zero-based index of the first event
to return

limit = the number of events to return

sortBy = field:ascending |
descending The name of the event field
on which to sort with the optional sort
direction. When no sort direction is specified,
the sort is in descending order.

The selection method is: http://
espsrv01.unx.sas.com:18080/esp/
documentation/rest/restFilter.html

Pattern Events

Command Path Description

GET /patternEvents Retrieve all events that reside in open patterns
in the server.

GET /patternEvents/projectId/
contqueryId/windowId

Retrieve all events that reside in open patterns
in the pattern window specified by
projectId, contqueryId, and
windowId.

GET /patternEvents?
project=...&contquery=...&name=..
.

Retrieve all events that reside in open patterns
in pattern windows that match the specified
criteria. All of the parameter values are '|'
separated lists of values.

The selection method is: http://
espsrv01.unx.sas.com:18080/esp/
documentation/rest/restSelection.html

Sending HTTP Requests to the XML Server 37

Command Path Description

GET /patternEvents?
windowFilter=...&eventFilter=...

Example:

/patternEvents?
windowFilter=in(name,'patwin_
1','patwin_2')&
eventFilter=eq(VID,123456)

Retrieve all events that reside in open patterns
in the pattern windows that are returned by the
queries specified in the windowFilter
and eventFilter parameters. Both filters
are optional. Leaving either one out causes all
resources of that type (either windows or
events) to be included in the result.

The selection method is: http://
espsrv01.unx.sas.com:18080/esp/
documentation/rest/restFilter.html

Event Stream Processing Server

Command Path Description Parameters

HEAD /server Check the availability of the
server

PUT /server/state?
value=persisted

Set the state of the server to
persisted (save the server
state).

PUT /server/state?
value=reloaded

Set the state of the server
reloaded (reload the model
from which the server was
booted).

path
The path to be used to
store the server data.

PUT /server/state?
value=stopped

Set the state of the server
stopped (request the server to
exit).

Logging

Command Path Description

GET /loggers Retrieve all the loggers from the server.

GET /loggers/loggerId Retrieve the logger that is specified by
loggerId from the server, if the logger
exists.

38 Chapter 4 • Using the XML Layer

Command Path Description

PUT /loggers/loggerId/level?
value=loglevel

Set the log level of the logger that is specified
by loggerId, if the logger exists. The valid
log levels are:

• trace

• error

• warn

• fatal

• info

• debug

• off

Connectors

Command Path Description

GET /connectorInfo Return the connector metadata for all
connectors.

Project Results

Command Path Description Parameters

POST /projectResults Run a project and send back
window contents. You can
specify a projectUrl
parameter that points to the
project definition. If the
parameter is not set, then the
request body is expected to
contain the project definition.

projectUrl
Optional value pointing to
a URL containing the
project definition.

windows
A | separated list of
window names whose
contents is returned upon
completion of the project.

Sending HTTP Requests to the XML Server 39

Project Validation Results

Command Path Description Parameters

POST /
projectValidationResu
lts

Validate project XML. You
can specify a projectUrl
parameter that points to the
project definition. If the
parameter is not set, then the
request body is expected to
contain the project definition.

projectUrl
Optional value pointing to
a URL containing the
project definition.

Mapping Release 3.1 HTTP Requests to Release 3.2 HTTP Requests
You must change any HTTP requests that you programmed using SAS Event Stream
Processing 3.1 to conform to the new API that is available with release 3.2.

3.1 HTTP Request 3.2 HTTP Request

GET /model GET /projects

GET /model?projects=name GET /projects?projectID

GET /model?projects=name1,name2 GET /projects?name=name1|name2

GET /count GET /windows?count=true

GET /contents/project/query/
window

GET /events/projectId/contqueryId/windowId

GET /reload PUT /server/state?value=reloaded

GET /persist?path=directory PUT /server/state?
value=persisted&path=directory

GET /persist/project?
path=directory

PUT /projects/projectID/state?
value=persisted&path=directory

GET /restore/project?
path=directory

PUT /projects/projectID/state?
value=restored

GET /start-connectors/project PUT /projects/projectId/state?
value=connectorsStarted

GET /start-project/project PUT /projects/projectId/state?
value=running

GET /stop-project/project PUT /projects/projectId/state?
value=stopped

40 Chapter 4 • Using the XML Layer

3.1 HTTP Request 3.2 HTTP Request

GET /delete-project/project DELETE /projects/projectId

POST /load-project PUT projects/projectId

POST /run-project POST /projectResults

POST /inject/project/query/
source_window

PUT /windows/projectId/contqueryId/
windowId/state?value=injected

GET /inject-url/project/
contquery/source_window

PUT /windows/projectId/contqueryId/
windowId/state?value=injected

Using the XML Client

Overview to the XML Client
Use the command line utility dfesp_xml_client to communicate with an XML
server using the HTTP protocol. You can send GET, POST, PUT, and DELETE requests
as you need. GET requests are sent by default.

The client supports communication with the XML server over a secure HTTP channel
using HTTPS.

To send HTTP requests to the XML server, use the following command.

dfesp_xml_client -url URL <-headers headers><-cert certificate> <-pass passphrase >
<-auth-tokentoken> <-auth-token-url url> <-post <URL>> <-put <URL>>
<-head> <-delete> <-showheaders>

Table 4.2 Command Arguments for the XML Client

Argument Description

-url URL Specifies the URL to which to send an HTTP request.

-headers headers Specifies a comma-separated list of colon-separated name-value
pairs. These pairs specify headers to URL requests.

-cert
certificate_file

Specifies the certificate file to which to refer when using
HTTPS.

-pass passphrase Specifies the SSL passphrase for HTTP.

-auth—token token Specifies the OAuth authentication token to be used when
communicating with a server using authentication.

-auth—token—url url Specifies the URL from which to get an Oauth authentication
token.

Using the XML Client 41

Argument Description

-post <url> Specifies to send an HTTP POST request. You can specify a
URL to which send the request.

-put <url> Specifies to send an HTTP PUT request. You can specify a URL
to which to send the request.

-delete Specifies to send an HTTP DELETE request

-head Specifies to send an HTTP HEAD request.

-showheaders Specify to display the HTTP response headers.

If you are using HTTPS, specify the applicable certificate and pass phrase information.

Get the Current Model
To get the current model from the local host, run the following command line:
dfesp_xml_client -url "http://localhost:46001/SASESP/projects"

<projects>
 <project name='project'>
 <contqueries>
 <contquery name='query'>
 <windows>
 <window-source name='trades'/>
 <window-copy name='frontRunningBuy'/>
 <window-copy name='frontRunningSell'/>
 <window-functional name='transform'/>
 <window-functional name='venueData'/>
 <window-functional name='brokerAlerts'/>
 <window-functional name='violations'/>
 <window-pattern name='frontRunning'/>
 <window-aggregate name='brokerAlertsAggr'/>
 <window-counter name='counter'/>
 <window-source name='brokersSource'/>
 <window-source name='restrictedSource'/>
 <window-source name='venuesSource'/>
 <window-filter name='largeTrades'/>
 <window-filter name='validBroker'/>
 <window-join name='addVenueData'/>
 <window-join name='addBrokerData'/>
 <window-join name='addRestrictedData'/>
 <window-filter name='restrictedTrades'/>
 <window-filter name='openMarking'/>
 <window-filter name='closeMarking'/>
 <window-aggregate name='violationCounts'/>
 </windows>
 <edges>
 <edge source='trades' target='largeTrades counter'/>
 <edge source='frontRunningBuy' target='brokerAlerts violations'/>
 <edge source='frontRunningSell' target='brokerAlerts violations'/>
 <edge source='transform'

42 Chapter 4 • Using the XML Layer

 target='restrictedTrades openMarking
 closeMarking frontRunning'/>
 <edge source='largeTrades venueData' target='addVenueData'/>
 <edge source='brokerAlerts' target='brokerAlertsAggr'/>
 <edge source='violations' target='violationCounts'/>
 <edge source='frontRunning' target='frontRunningBuy' slot='1'/>
 <edge source='frontRunning' target='frontRunningSell' slot='2'/>
 <edge source='addVenueData brokersSource' target='addBrokerData'/>
 <edge source='validBroker restrictedSource'
 target='addRestrictedData'/>
 <edge source='venuesSource' target='venueData'/>
 <edge source='addBrokerData' target='validBroker'/>
 <edge source='addRestrictedData' target='transform'/>
 <edge source='restrictedTrades' target='brokerAlerts violations'/>
 <edge source='openMarking' target='brokerAlerts violations'/>
 <edge source='closeMarking' target='brokerAlerts violations'/>
 </edges>
 </contquery>
 </contqueries>
 </project>
</projects>

Get Event Counts
To get the event counts for windows in the model, run the following command:
dfesp_xml_client -url "http://localhost:46001/SASESP/windows?
count=true"

<windows>
 <window-join contquery='query' count='51158'
 name='addBrokerData' project='project'/>
 <window-join contquery='query' count='36578'
 name='addRestrictedData' project='project'/>
 <window-join contquery='query' count='51158'
 name='addVenueData' project='project'/>
 <window-functional contquery='query' count='121'
 name='brokerAlerts' project='project'/>
 <window-aggregate contquery='query' count='5'
 name='brokerAlertsAggr' project='project'/>
 <window-source contquery='query' count='5'
 name='brokersSource' project='project'/>
 <window-filter contquery='query' count='11'
 name='closeMarking' project='project'/>
 <window-counter contquery='query' count='1'
 name='counter' project='project'/>
 <window-pattern contquery='query' count='6'
 name='frontRunning' project='project'/>
 <window-copy contquery='query' count='2'
 name='frontRunningBuy' project='project'/>
 <window-copy contquery='query' count='4'
 name='frontRunningSell' project='project'/>
 <window-filter contquery='query' count='51158'
 name='largeTrades' project='project'/>
 <window-filter contquery='query' count='94'
 name='openMarking' project='project'/>
 <window-source contquery='query' count='10'

Using the XML Client 43

 name='restrictedSource' project='project'/>
 <window-filter contquery='query' count='10'
 name='restrictedTrades' project='project'/>
 <window-source contquery='query' count='1000000'
 name='trades' project='project'/>
 <window-functional contquery='query' count='36578'
 name='transform' project='project'/>
 <window-filter contquery='query' count='36578'
 name='validBroker' project='project'/>
 <window-functional contquery='query' count='10'
 name='venueData' project='project'/>
 <window-source contquery='query' count='10'
 name='venuesSource' project='project'/>
 <window-aggregate contquery='query' count='5'
 name='violationCounts' project='project'/>
 <window-functional contquery='query' count='121'
 name='violations' project='project'/>
</windows>

Retrieve Events from a Window
To retrieve events from the window brokerAlerts, run the following command:
dfesp_xml_client -url "http://localhost:46001/SASESP/events/
project/query/brokerAlerts"

<events>
 <event window='project/query/brokerAlerts'>
 <broker>1012334</broker>
 <brokerName>Lisa</brokerName>
 <closeMarking>0</closeMarking>
 <frontRunningBuy>0</frontRunningBuy>
 <frontRunningSell>0</frontRunningSell>
 <id>14228114</id>
 <openMarking>0</openMarking>
 <restrictedTrades>1</restrictedTrades>
 <total>1</total>
 </event>
 <event window='project/query/brokerAlerts'>
 <broker>1012334</broker>
 <brokerName>Lisa</brokerName>
 <closeMarking>1</closeMarking>
 <frontRunningBuy>0</frontRunningBuy>
 <frontRunningSell>0</frontRunningSell>
 <id>14205698</id>
 <openMarking>0</openMarking>
 <restrictedTrades>0</restrictedTrades>
 <total>1</total>
 </event>
 <event window='project/query/brokerAlerts'>
 <broker>1012445</broker>
 <brokerName>Curt</brokerName>
 <closeMarking>1</closeMarking>
 <frontRunningBuy>0</frontRunningBuy>
 <frontRunningSell>0</frontRunningSell>
 <id>8175288</id>
 <openMarking>0</openMarking>

44 Chapter 4 • Using the XML Layer

 <restrictedTrades>0</restrictedTrades>
 <total>1</total>
 </event>
 ...
</events>

To retrieve at most three events from all windows in the model with
brokerName=Curt, sorted by price, run the following command: $
dfesp_xml_client -url "http://localhost:46001/SASESP/events?
brokerName=Curt&sortBy=price&start=0&limit=3"

<events count='3'>
 <event window='project/query/transform'>
 <broker>1012445</broker>
 <brokerAddress>SAS Campus Drive Cary NC 27513</brokerAddress>
 <brokerEmail>919-123-4567</brokerEmail>
 <brokerName>Curt</brokerName>
 <brokerage>ESP</brokerage>
 <buyer>0</buyer>
 <buysellflg>0</buysellflg>
 <closeSeconds>57600</closeSeconds>
 <closeTimeGMT>20:00:00</closeTimeGMT>
 <currency>87236</currency>
 <date>2010-08-04 15:58:31</date>
 <id>10429043</id>
 <msecs>146</msecs>
 <openSeconds>34200</openSeconds>
 <openTimeGMT>13:30:00</openTimeGMT>
 <price>205.230000</price>
 <quant>1000</quant>
 <seller>8359384</seller>
 <symbol>MA</symbol>
 <time>1280951911</time>
 <timeAfterOpen>23311</timeAfterOpen>
 <timeTillClose>89</timeTillClose>
 <tradeSeconds>57511</tradeSeconds>
 <venue>55333</venue>
 </event>
 <event window='project/query/validBroker'>
 <broker>1012445</broker>
 <brokerAddress>SAS Campus Drive Cary NC 27513</brokerAddress>
 <brokerEmail>919-123-4567</brokerEmail>
 <brokerName>Curt</brokerName>
 <brokerage>ESP</brokerage>
 <buyer>0</buyer>
 <buysellflg>0</buysellflg>
 <closeSeconds>57600</closeSeconds>
 <closeTimeGMT>20:00:00</closeTimeGMT>
 <currency>87236</currency>
 <id>10429043</id>
 <msecs>146</msecs>
 <openSeconds>34200</openSeconds>
 <openTimeGMT>13:30:00</openTimeGMT>
 <price>205.230000</price>
 <quant>1000</quant>
 <seller>8359384</seller>
 <symbol>MA</symbol>

Using the XML Client 45

 <time>1280951911</time>
 <venue>55333</venue>
 </event>
 <event window='project/query/transform'>
 <broker>1012445</broker>
 <brokerAddress>SAS Campus Drive Cary NC 27513</brokerAddress>
 <brokerEmail>919-123-4567</brokerEmail>
 <brokerName>Curt</brokerName>
 <brokerage>ESP</brokerage>
 <buyer>0</buyer>
 <buysellflg>0</buysellflg>
 <closeSeconds>57600</closeSeconds>
 <closeTimeGMT>20:00:00</closeTimeGMT>
 <currency>87236</currency>
 <date>2010-08-04 09:30:22</date>
 <id>10417204</id>
 <msecs>6123</msecs>
 <openSeconds>34200</openSeconds>
 <openTimeGMT>13:30:00</openTimeGMT>
 <price>202.190000</price>
 <quant>4300</quant>
 <seller>8382948</seller>
 <symbol>MA</symbol>
 <time>1280928622</time>
 <timeAfterOpen>22</timeAfterOpen>
 <timeTillClose>23378</timeTillClose>
 <tradeSeconds>34222</tradeSeconds>
 <venue>55444</venue>
 </event>
</events>

To retrieve events from all aggregate windows in the model, run the following
command: $ dfesp_xml_client -url "http://localhost:46001/
SASESP/events?windowFilter=eq(type,'window-aggregate')"

events count='10'>
 <event window='project/query/brokerAlertsAggr'>
 <brokerName>Joe</brokerName>
 <closeMarking>0</closeMarking>
 <frontRunningBuy>1</frontRunningBuy>
 <frontRunningSell>1</frontRunningSell>
 <openMarking>17</openMarking>
 <restrictedTrades>2</restrictedTrades>
 <total>21</total>
 </event>
 <event window='project/query/brokerAlertsAggr'>
 <brokerName>Curt</brokerName>
 <closeMarking>2</closeMarking>
 <frontRunningBuy>1</frontRunningBuy>
 <frontRunningSell>1</frontRunningSell>
 <openMarking>21</openMarking>
 <restrictedTrades>2</restrictedTrades>
 <total>27</total>
 </event>
 <event window='project/query/brokerAlertsAggr'>
 <brokerName>Steve</brokerName>
 <closeMarking>3</closeMarking>

46 Chapter 4 • Using the XML Layer

 <frontRunningBuy>0</frontRunningBuy>
 <frontRunningSell>1</frontRunningSell>
 <openMarking>18</openMarking>
 <restrictedTrades>0</restrictedTrades>
 <total>22</total>
 </event>
 <event window='project/query/brokerAlertsAggr'>
 <brokerName>Lisa</brokerName>
 <closeMarking>3</closeMarking>
 <frontRunningBuy>0</frontRunningBuy>
 <frontRunningSell>0</frontRunningSell>
 <openMarking>23</openMarking>
 <restrictedTrades>3</restrictedTrades>
 <total>29</total>
 </event>
 <event window='project/query/brokerAlertsAggr'>
 <brokerName>Sally</brokerName>
 <closeMarking>3</closeMarking>
 <frontRunningBuy>0</frontRunningBuy>
 <frontRunningSell>1</frontRunningSell>
 <openMarking>15</openMarking>
 <restrictedTrades>3</restrictedTrades>
 <total>22</total>
 </event>
 <event window='project/query/violationCounts'>
 <count>2</count>
 <violation>frontRunningBuy</violation>
 </event>
 <event window='project/query/violationCounts'>
 <count>11</count>
 <violation>closeMarking</violation>
 </event>
 <event window='project/query/violationCounts'>
 <count>10</count>
 <violation>restrictedTrades</violation>
 </event>
 <event window='project/query/violationCounts'>
 <count>4</count>
 <violation>frontRunningSell</violation>
 </event>
 <event window='project/query/violationCounts'>
 <count>94</count>
 <violation>openMarking</violation>
 </event>
</events>

Reload the Model
To reload the model from the original input model, run the following command:
dfesp_xml_client -url "http://localhost:46001/SASESP/server/
state?value=reloaded" -put

<response code='0'>
 <message>esp server reloaded</message>
</response>

Using the XML Client 47

Persist the Model
To save the model to the espdata directory, run the following command: $
dfesp_xml_client -url "http://localhost:46001/SASESP/server/
state?value=persisted&path=espdata" -put

<response>
 <message>esp successfully saved to 'espdata'</message>
</response>

Start a Project
To start a project, run the following command: dfesp_xml_client -url
"http://localhost:46001/SASESP/projects/project/state?
value=running" -put

<response>
 <message>project 'project' successfully started</message>
</response>

Stop a Project
To stop a project, run the following command: dfesp_xml_client -url
"http://localhost:46001/SASESP/projects/project/state?
value=stopped" -put

<response>
 <message>project 'project' successfully stopped</message>
</response>

To stop all projects, run the following command: $ dfesp_xml_client -url
"http://localhost:46001/SASESP/stoppedProjects/project" -post

<response>
 <message>project 'project1' successfully stopped
 project 'project2' successfully stopped
 project 'project3' successfully stopped</message>
</response>

Load a Project
To load the project contained in the file model.xml, run the following command: $
dfesp_xml_client -url "http://localhost:46001/SASESP/projects/
project" -put "file://model.xml"

<message>load project 'project' succeeded</message>

To load a project from an HTTP URL, run the following command: $
dfesp_xml_client -url "http://localhost:46001/SASESP/projects/
newproject" -put "http://myserver.com/espmodel.xml"

<message>load project 'newproject' succeeded</message>

48 Chapter 4 • Using the XML Layer

Delete a Project
To delete a project, run the following command: dfesp_xml_client -url
"http://esp-base:46001/delete-project/project"

http://esp-base:46001/delete-project/project : status 200
<response>
 <message>project 'project' successfully deleted</message>
</response>

Inject Events into a Source Window
To tell the server to pull events from a specified URL and inject them into project/
query/trades using a block size of 10000, run the following command:
dfesp_xml_client -url "http://localhost:46001/SASESP/windows/
project/query/trades/state?value=injected&eventUrl=file://
trades1M.csv&blocksize=10000" -put

<response>

<msg>1000000 events injected into source window project/query/trades with blk size 10000</msg>

</response>

To read events from the URL specified in the -put command line argument and send
them to the server for injection, run the following command: $ dfesp_xml_client
-url "http://espsrv01:46001/SASESP/windows/project/query/
trades/state?value=injected&blocksize=10000" -put "file://
trades1M.csv"

<response>

<msg>1000000 events injected from file://trades1M.csv into source window project/query/trades with blk size 10000</msg>

</response>

Run a Project and Get Results
To send the project results.xml to the server, have it run, and return the contents of
the brokerAlertsAggr window, run the following command: dfesp_xml_client
-url "http://localhost:46001/SASESP/projectResults?
windows=brokerAlertsAggr" -post "file://results.xml"

<results>
 <window key='project/query/brokerAlertsAggr'>
 <events>
 <event>
 <brokerName>Joe</brokerName>
 <closeMarking>0</closeMarking>
 <frontRunningBuy>1</frontRunningBuy>
 <frontRunningSell>1</frontRunningSell>
 <openMarking>17</openMarking>
 <restrictedTrades>2</restrictedTrades>
 <total>21</total>
 </event>
 <event>
 <brokerName>Curt</brokerName>
 <closeMarking>2</closeMarking>
 <frontRunningBuy>1</frontRunningBuy>

Using the XML Client 49

 <frontRunningSell>1</frontRunningSell>
 <openMarking>21</openMarking>
 <restrictedTrades>2</restrictedTrades>
 <total>27</total>
 </event>
 <event>
 <brokerName>Steve</brokerName>
 <closeMarking>3</closeMarking>
 <frontRunningBuy>0</frontRunningBuy>
 <frontRunningSell>1</frontRunningSell>
 <openMarking>18</openMarking>
 <restrictedTrades>0</restrictedTrades>
 <total>22</total>
 </event>
 <event>
 <brokerName>Lisa</brokerName>
 <closeMarking>3</closeMarking>
 <frontRunningBuy>0</frontRunningBuy>
 <frontRunningSell>0</frontRunningSell>
 <openMarking>23</openMarking>
 <restrictedTrades>3</restrictedTrades>
 <total>29</total>
 </event>
 <event>
 <brokerName>Sally</brokerName>
 <closeMarking>3</closeMarking>
 <frontRunningBuy>0</frontRunningBuy>
 <frontRunningSell>1</frontRunningSell>
 <openMarking>15</openMarking>
 <restrictedTrades>3</restrictedTrades>
 <total>22</total>
 </event>
 </events>
 </window>
 <message>project project successfully run</message>
</results>

Validate a Model
To validate a project model, run the following command: dfesp_xml_client -url
"http://localhost:46001/SASESP/projectValidationResults" -post
file://model.xml

<schema-validation-success xsd='file:///mnt/data/home/roleve/work/dev/esp3.2/develop/../modeling-xml/schema/model.rng'/>

Validating Your XML Code
To validate XML code that you have written, use the $DFESP_HOME/bin/
dfesp_xml_validate "XML_file_to_validate" command.

The command uses the following to perform a syntactic check on your file:

• the model.rnc XML schema definition file that is located in
$DFESP_HOME/etc/xml/schema

50 Chapter 4 • Using the XML Layer

• the jing.jar validation code

Note: Do not edit the model.rnc XML schema definition file.

When the validation tool finds a violation of the schema definition, it generates error
messages that include line numbers and descriptions.

Follow these suggestions to improve the speed of the model creation process and reduce
errors:

• Draw the directed graph that represents the continuous query, identifying the window
type of each node. At first, make the model insert-only.

• Connect two windows with an edge. Start the XML server and submit the model to
the server.

• Use Streamviewer to publish to and subscribe from windows of the query. This
enables you to see whether you are getting the expected data flow.

• Successively add windows to the query, each time testing whether the data flow is as
you expected.

XML Language Elements

Overview to XML Language Elements
The basic syntax of an XML model for an event stream processing engine is as follows:

<engine>
 <projects>
 +<project>
 <contqueries>
 +<contquery>
 <windows>
 +<window-type> </window-type>
 </windows>
 <edges>
 +<edge> </edge>
 </edges>
 </contquery>
 </contqueries>
 </project>
 </projects>
</engine>

The following set of tables lists the XML language elements that you can use to build
models. For each element listed, the following information is provided:

• the required and optional elements that the element can contain

• the required and optional attributes of the element

• a usage example

Note: The action= attribute has been removed from the <project> language
element. You must remove this attribute from any XML model that you have written
before you use the model with Release 3.2.

XML Language Elements 51

XML Language Elements for the Basic Structure of a Model

Table 4.3 XML Language Elements for the Basic Structure of a Model

Element Details

engine Description: The global wrapper for an event stream processing
engine.

Elements: projects

[http-servers]

Attributes: name=string

Engine name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the name
can include the following characters: _, a-z, A-Z, 0-9.

[port=]

The publish/subscribe port for the engine

[dateformat=]

The date format to use when converting dates to or from
an internal representation.

[on-project-fatal=”exit” | “exit-
with-core” | “stop-and-remove”]

Specify how the engine reacts to fatal errors in project.
Do one of the following:

• Exit with the engine process.

• Exit and generate a core file for debugging, or stop all
processing.

• Disconnect publish/subscribe, clean up all threads and
memory, and remove the process from the engine,
leaving the engine up and processing other projects.

.

Example: <engine port='31417
 dateformat='YYYYMMDD HH:mm:ss'>
 <projects>
 ...
 </projects>
</engine>

52 Chapter 4 • Using the XML Layer

Element Details

projects Description: A container for a list of project elements.

Elements: Zero or more project elements

Attributes: None

Example: <projects>
 <project...> ... </project>
 <project...> ... </project>
</projects>

XML Language Elements 53

Element Details

project Description: The primary unit in the XML server. Contains execution
and connectivity attributes and a list of continuous
queries to execute. The thread pool size is specified at the
project level. Projects have optional ports for bandwidth
distribution.

Elements: contqueries

[project-connectors]

[properties]

Each property name=value specified within a
properties element encloses text that specifies a
token that can be referenced in the model as @TOKEN@.

Attributes: name=string

Project name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the name
can include the following characters: _, a-z, A-Z, 0-9.

threads=int

A positive integer for the number of threads to use from
the available thread pool.

pubsub= none | auto | manual

Publish/subscribe mode for the project.

[compress-open-patterns= true |
false]

Compress stored events in unresolved pattern instances in
order to save memory

[port=port]

The project-level publish/subscribe port for auto or
manual mode

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH | pi_FW_HASH
| pi_EMPTY]

A default index type for all windows in the project that
do not explicitly specify an index type.

[use-tagged-token= true | false]

Specify whether tagged token data flow semantics should
be used for continuous queries.

[retention-tracking= true | false]

Specify whether to use retention tracking for the project.
This allows two events per key in output event blocks.

[disk-store-path=string]

Specify the path for on-disk event storage.

[heartbeat-interval=unsigned-short-integer]

Specify how frequently the system sends timer heartbeats
to the project. The default value is 1 second. This
heartbeat drives wall-clock-based retention and pattern
time outs. When a model has an exceptionally large
number of unresolved pattern instances, increasing the
value of the heartbeat interval can optimize how the
model runs.

Example: <project name='analysis' threads='16'
 pubsub='manual' port='31417'
 index='pi_HASH' use-tagged-token='true'>
 <contqueries>
 ...
 </contqueries>
</project>

54 Chapter 4 • Using the XML Layer

Element Details

contqueries Description: A container for the list of contquery elements.

Elements: One or more contquery elements.

Attributes: None.

Example: <contqueries>
 <contquery> ... </contquery>
 <contquery> ... </contquery>
</contqueries>

contquery Description: The definition of a continuous query, which includes
windows and edges. You can use this container to break
large models into smaller modules. You can use a project
connector or adapter to send event streams from one
continuous query to a source window in another.

Elements windows

[edges]

Attributes: name=string

The name of the continuous query. A name must start
with one of the following characters: _, a-z, A-Z. The rest
of the name can include the following characters: _, a-z,
A-Z, 0-9.

[trace=string]

One or more space-separated window names or IDs.

[index= pi_RBTREE | pi_HASH |
ph_LN_HASH | pi_CL_HASH | pi_FW_HASH
| pi_EMPTY]

A default index type for all windows in the continuous
query that do not explicitly specify an index type.

[timing-threshold=value]

When a window in the query takes more than value
microseconds to compute for a given event or event
block, a warning message is logged.

[include-singletons=true | false]

Specify whether to add unattached source windows.

Example: <contquery name=’cq1’>
 <windows>
 <window-type name='one'>...</window-type>
 <window-type name='two'>...</window-type>
 </windows>
 </contquery>

XML Language Elements 55

Element Details

windows Description: A list of window-type elements.

Elements: window-type, where type can be one of the following
types:

• aggregate

• compute

• copy

• counter

• filter

• functional

• join

• notification

• pattern

• procedural

• source

• textCategory

• textContext

• textSentiment

• union

Attributes: None

Example: <windows>
 <window-source name='factInput'
 ...</window-source>
 <window-source name='dimensionInput'
 ...</window-source>
 <window-join name='joinedInput'
 ...</window-join>
</windows>

edges Description: A container for a list of edge elements.

Elements: One of more edge elements.

Attributes: None.

Example: See edge.

56 Chapter 4 • Using the XML Layer

Element Details

edge Description: The connectivity specification between two or more
windows.

Attributes: source=name

String to specify the window name of the leading edge.

target=name

String to specify one or more names of trailing edges,
separated by spaces.

[slot=int]

Integer to specify the slot to use with a splitter.

Example: <edges>
 <edge source='wind001' target'win002'/>
 <edge source='wind002' target'win003'/>
 <edge source='wind003' target'win004
 win005 win006'/>
 ...
</edges>

XML Language Elements 57

XML Language Elements That Define Window Types

Table 4.4 XML Language Elements That Define Window Types

Element Details

window-
aggregate

Description: An aggregate window.

Elements: [splitter-expr] |

[spliter-plug]

[finalized-callback]

schema | schema-string

output

[expr-initialize]

[connectors]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[insert-only]

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

Example: See “XML Examples of Aggregate Windows”.

58 Chapter 4 • Using the XML Layer

Element Details

window-compute Description: A compute window.

Elements: [splitter-expr] |

[spliter-plug]

[finalized-callback]

schema | schema-string

output

[expr-initialize]

[context-plugin]

[connectors]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[insert-only]

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

Example: See “Window-Compute Examples”.

Note: For compute windows, each <field-
expr> corresponds to a <field>. Thus, the
sequence<output><field-expr>...</
field-expr></output> must match a
corresponding sequence of
<fields><field>...</field></
fields>. For more information about these
elements, see Table 4.9.

XML Language Elements 59

Element Details

context-plugin Description: Specify a function that returns derived context to
use with plug-ins.

Attributes: name=”string”

A name must start with one of the following
characters: _, a-z, A-Z. The rest of the name can
include the following characters: _, a-z, A-Z, 0-9.

function

The system looks in plugins/name for the
specified function in the shared object or
DLL. It calls that function that must return a
pointer to a C++ class whose base class must be
dfESPcontext.

Example: <context-plugin name="p1"
 function="f1"/>

window-counter Description: A counter window.

Attributes: name=”string”

A name must start with one of the following
characters: _, a-z, A-Z. The rest of the name can
include the following characters: _, a-z, A-Z, 0-9.

[count-interval=’period’]

[clear-interval=’cperiod’]

Examples: See Chapter 8, “Creating Counter Windows,”.

60 Chapter 4 • Using the XML Layer

Element Details

window-copy Description: A copy window.

Elements: [splitter-expr] |

[spliter-plug]

[finalized-callback]

[retention]

[connectors]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[insert-only]

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

Example: See “Window-Copy Example”.

XML Language Elements 61

Element Details

window-filter Description: A filter window.

Elements: [splitter-expr] |

[spliter-plug]

[finalized-callback]

expression | plugin

[expr-initialize]

[connectors]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[insert-only]

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

Example: <window-filter name='filterSrc'
 index='pi_EMPTY'>
 <expression>
 not(isnull(src)
 or isnull(customerURI))
 </expression>
</window-filter>

62 Chapter 4 • Using the XML Layer

Element Details

window-
functional

Description: A functional window.

Elements: schema

defines the output schema.

function-context

defines the entities used to run functions and
generate values in the output event.

[generate]

contains a function to run that determines whether
an output event should be generated from an input
event.

[event-loops]

enables you to define ways to generate multiple
output events from a single input event

Attributes: name=”string”

A name must start with one of the following
characters: _, a-z, A-Z. The rest of the name can
include the following characters: _, a-z, A-Z, 0-9.

Examples: See Chapter 9, “Creating Functional Windows,”.

XML Language Elements 63

Element Details

window-join Description: A join window.

Elements: [splitter-expr] |

[spliter-plug]

[finalized-callback]

join

output

[expr-initialize]

[connectors]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[insert-only]

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

[left-index = pi_RBTREE |
pi_HASH | pi_LN_HASH |
pi_CL_HASH | pi_FW_HASH |
pi_EMPTY| pi_HLEVELDB]

[right-index = pi_RBTREE |
pi_HASH | pi_LN_HASH |
pi_CL_HASH | pi_FW_HASH |
pi_EMPTY | pi_HLEVELDB]

Optional overrides for left and right index types.

Use the pi_HLEVELDB to use the on-disk store.

Example: See “Window-Join Examples”.

64 Chapter 4 • Using the XML Layer

Element Details

window-pattern Description: A pattern window.

Elements: [splitter-expr] |

[spliter-plug]

[finalized-callback]

schema | schema-string

patterns

[connectors]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

Examples: See “XML Pattern Window Examples”.

patterns Description: A container for a list of pattern elements.

Elements: One or more pattern elements.

Attributes: None.

Example: See “XML Pattern Window Examples”.

XML Language Elements 65

Element Details

pattern Description: A wrapper within a pattern window where events
of interest (EOIs), controlling attributes, pattern
logic expression, and pattern output rules are
grouped.

Elements: events

Attributes: [index=fields]

A comma-separated list of fields from the input
windows that forms an index generation function.

Example: See “XML Pattern Window Examples”.

logic Description: In a pattern element, a text string that
represents the logical operator expression to
combine events of interest (EOIs).

Elements: None.

Attributes: Enclosed text specifies an expression that defines
the pattern. For example:
fby(e1,fby(e2,not(e3)),e4,e5,e6
)when e1, e2, e3, e4, and e5 are named event
elements.

You can add a temporal condition by appending it
to the operator with braces. For
example:fby{30 seconds}

Example: See “XML Pattern Window Examples”.

66 Chapter 4 • Using the XML Layer

Element Details

window-
procedural

Description: A procedural window.

Elements: [splitter-expr] |

[spliter-plug]

[finalized-callback]

schema | schema-string

[connectors]

[context-plugin]

[plugin]

[ds2–code]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[insert-only]

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

Example: See “XML Examples of Procedural Windows”.

ds2–code Description: A block of DS2 code that is used as an input
handler for procedural windows.

Elements: CDATA that provides a block of DS2 source code
to serve as the handler function.

Attributes: source=string

Name of the input widow for this input handler.

Example: See “XML Examples of Procedural Windows”.

XML Language Elements 67

Element Details

context-plugin Description: Specify a function that returns derived context to
use with plug-ins.

Attributes: name=”string”

A name must start with one of the following
characters: _, a-z, A-Z. The rest of the name can
include the following characters: _, a-z, A-Z, 0-9.

function

The system looks in plugins/name for the
specified function in the shared object or
DLL. It calls that function that must return a
pointer to a C++ class whose base class must be
dfESPcontext.

<properties>

Specify an optional property list.

Example: <context-plugin
 name="p2"
 function="f2">

68 Chapter 4 • Using the XML Layer

Element Details

window-source Description: A source window.

Elements: [splitter-expr] |

[spliter-plug]

[finalized-callback]

schema | schema-string

[retention]

[connectors]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[insert-only]

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

autogen-key={true | false}

Auto-generate the key. The source window must
be insert-only and have a single INT64 or
STRING key.

Example: See “Window-Source Example”.

XML Language Elements 69

Element Details

window-
textcategory

Description: A window that enables you to categorize a text
field in incoming events.

Elements: splitter-expr | splitter-plug

[connectors]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

mco-file

Path to the MCO file

text-field=”fieldname”

Name of the field in the input window that
contains the text to analyze.

Example: <window-textcategory
name='textCategoryWindow' mco-
file='IPTC.mco' text-
field='msg' index='pi_EMPTY'>

70 Chapter 4 • Using the XML Layer

Element Details

window-
textcontext

Description: A window that enables the abstraction of
classified terms from an unstructured string field.

Elements: [splitter-expr] |

[spliter-plug]

[finalized-callback]

[connectors]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

liti-fields=”list”

Comma-separated list of LITI files.

text-field=”fieldname”

Name of the field in the input window that
contains the text to analyze.

Example: <window-textcontext
name='TWEET_ANALYSIS' liti-
files='/opt/liti/
english_tweets.liti,/opt/liti/
cs_slang.liti' text-
field='tweetBody>

XML Language Elements 71

Element Details

window-
textsentiment

Description: A text sentiment window.

Elements: [splitter-expr | splitter-plug]

[connectors]

Attributes: name=”string”

A name must start with one of the following
characters: _, a-z, A-Z. The rest of the name can
include the following characters: _, a-z, A-Z, 0-9.

sam-file

Specify the full path to the SAM file. You must
have a SAS Text Analytics license for this to run
properly.

text-field

name for the string field in the input event to
analyze

[index = pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

index type for the window

[pubsub = true | false]

publish/subscribe mode for the window. When the
project-level value of pubsubis manual, a
value of true enables publishing and
subscribing for the window and a value of
false disables it.

[pubsub—index = value]

publish/subscribe index value

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

Example: <window-textsentiment name="sentiment"
 sam-file="/users/henri/samFile/indep.sam"
 text-field="msg"
 index="pi_EMPTY"/>

72 Chapter 4 • Using the XML Layer

Element Details

window-union Description: A union window.

Elements: [splitter-expr] |

[spliter-plug]

[finalized-callback]

[connectors]

Attributes: name=”string”

Window name. A name must start with one of the
following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z,
A-Z, 0-9.

[index= pi_RBTREE | pi_HASH |
pi_LN_HASH | pi_CL_HASH |
pi_FW_HASH | pi_EMPTY]

Index type for the window.

pubsub= true | false

Publish/subscribe mode for the window. When the
project-level value of pubsub is manual,
true enables publishing and subscribing for the
window and false disables it.

[pubsub-index=value]

Publish/subscribe index value.

[insert-only]

[output-insert-only]

[collapse-updates]

When true, multiple update blocks are
collapsed into a single update block.

[strict = true | false]

When true, two inserts on the same key from
different inputs fail. When false, all input events
that are Inserts are treated as Upserts. In this case,
two Inserts for the same key on different input
windows work, but you cannot determine which
one is applied first.

Example: <window-union
name='combinedElementAttributeS
tats' strict='false'
pubsub='true'> </window-union>

XML Language Elements 73

XML Language Elements Relevant to Notification Windows

Table 4.5 XML Language Elements Relevant to Notification Windows

Element Details

window-
notification

Description: A notification window.

Elements: schema

function-context

smtp

delivery-channels

Attributes: name=”string”

A name must start with one of the following characters:
_, a-z, A-Z. The rest of the name can include the
following characters: _, a-z, A-Z, 0-9.

specifies the window name

Example: See “Examples of Notification Windows”.

smtp Description: Specify the attributes of the Simple Mail Transfer
Protocol (SMTP) server to use for email notifications.

Attributes: host=’host’

Fully qualified host name (for example, smtp-
server.orion.com)

[user=’username’]

Fully qualified user name (for example,
henri@orion.com)

[password=’password’]

Host password.

[port=’port’]

Host port.

Examples: See “Examples of Notification Windows”.

delivery-
channels

Description: A container of elements that specify the delivery
channels for a notification window.

Elements: email

sms

mms

Example: See “Examples of Notification Windows”.

74 Chapter 4 • Using the XML Layer

Element Details

email Description: A container of elements that specify an email
notification.

Elements: [deliver]

email-info

email-contents

Attributes: throttle-interval

specifies a time period in which at most one notification
is sent to a recipient.

test

a Boolean attribute that specifies whether to run in test
mode. When running in test mode, the notification is not
sent but written to the console. This can be useful when
drafting notification messages.

Example: <email throttle-interval='2' test='true | false'>
 <deliver>code</deliver>
 <email-info>
 <sender>code</sender>
 <recipients>code</recipients>
 <subject>code</subject>
 <from>code</from>
 <to>code</to>
 </email-info>
 <email-contents>
 <text-content name='blue'>...</text-content>
 <html-content name='red'>...</html-content>
 <image-content name='green'>...</image-content>
 ...
 </email-contents>
</email>

deliver Description: Contains a function to run in order to determine whether
a notification should be sent.

Attributes: Encloses text that specifies the function to run.

Example: <deliver>
code </deliver>

XML Language Elements 75

Element Details

email-info Description: A container of elements that represent data to be used to
send an email notification.

Elements: sender

recipients

subject

from

to

Example: <email-info>
 <sender>code</sender>
 <recipients>code</recipients>
 <subject>code</subject>
 <from>code</from>
 <to>code</to>
 </email-info>

sender Description: Specifies the sender address for a notification

Attributes: Encloses text that specifies the sender address.

Example: <sender>code</sender>

recipients Description: Specifies the recipients of a notification.

Attributes: Encloses text that specifies the recipients of a
notification.

Example: <recipients>code</recipients>

subject Description: Specifies the subject of a notification.

Attributes: Encloses text that specifies the subject of the
notification.

Example: <subject>code</subject>

from Description: Specifies the “from” text of a notification.

Attributes: Encloses the “from” text.

Example: <from>code</from>

to Description: Specifies the “to” text of an email notification.

Attributes: Encloses the “to” text.

Example: <to>code</to>

76 Chapter 4 • Using the XML Layer

Element Details

e-mail
contents

Description: A container of elements that specify the contents of an
email notification.

Elements: text-content

html-content

image-content

Example: <email-contents>
 <text-content name='name'>...</text-content>
 <html-content name='name'>...</html-content>
 <image-content name='name'>...</image-content>
 ...
 </email-contents>

html-content Description: Specifies HTML content for a notification.

Attributes: name

A name must start with one of the following characters:
_, a-z, A-Z. The rest of the name can include the
following characters: _, a-z, A-Z, 0-9.

Encloses the HTML code for a notification.

Example: <html-content name='name'>...</html-content>

XML Language Elements 77

Element Details

sms Description: A container of elements that specify an SMS text
message.

Elements: [deliver]

sms-info

sms-contents

Attributes: throttle-interval

specifies a time period in which at most one notification
is sent to a recipient.

test = true | false

a Boolean attribute that specifies whether to run in test
mode. When running in test mode, the notification is not
sent but written to the console. This can be useful when
drafting notification messages.

Example: <sms throttle-interval='interval' test='true | false'>
 <deliver>code</deliver>
 <sms-info>
 <sender>code</sender>
 <subject>code</subject>
 <from>code</from>
 <gateway>code</gateway>
 <phone>code</phone>
 </sms-info>
 <sms-contents>
 <text-content name='name'>...</text-content>
 </sms-contents>
</sms>

sms-info Description: A container of elements that specify information about
the SMS text message.

Elements: sender

subject

from

gateway

phone

Example: <sms-info>
 <sender>code</sender>
 <subject>code</subject>
 <from>code</from>
 <gateway>code</gateway>
 <phone>code</phone>
 </sms-info>

78 Chapter 4 • Using the XML Layer

Element Details

gateway Description: Specifies the recipient's provider's SMS gateway

Attributes: Encloses text that specifies the gateway

Example: <gateway>code</gateway>

phone Description: Specifies the recipient phone number

Attributes: Encloses text that specifies the phone number

Example: <phone>code</phone>

sms-contents Description: A container of elements that specify the contents of an
SMS text message.

Elements: text-content

Example: <sms-contents>
 <text-content name='name'>...</text-content>
 </sms-contents>

text-content Description: Specifies plain text to be provided in a notification.

Attributes: name=”string”

A name must start with one of the following characters:
_, a-z, A-Z. The rest of the name can include the
following characters: _, a-z, A-Z, 0-9.

Encloses the text to be provided in the notification.

Example: <text-content name='name'>...</text-content>

XML Language Elements 79

Element Details

mms Description: A container of elements that specifies an MMS
notification.

Elements: deliver

mms-info

mms-contents

Attributes: throttle-interval

specifies a time period in which at most one notification
is sent to a recipient.

test= true | false

a Boolean attribute that specifies whether to run in test
mode. When running in test mode, the notification is not
sent but written to the console. This can be useful when
drafting notification messages.

Example: <mms throttle-interval='interval' test='true | false'>
 <deliver>code</deliver>
 <mms-info>
 <sender>code</sender>
 <subject>code</subject>
 <gateway>code</gateway>
 <phone>code</phone>
 </mms-info>
 <mms-contents>
 <text-content name='name'>...</text-content>
 <image-content name='name'>...</image-content>
 ...
 </mms-contents>
</mms>

mms-info Description: A container of elements that specifies the content of an
MMS notification.

Elements: sender

subject

gateway

phone

Example: <mms-info>
 <sender>code</sender>
 <subject>code</subject>
 <gateway>code</gateway>
 <phone>code</phone>
 </mms-info>

80 Chapter 4 • Using the XML Layer

Element Details

image-content Description: Specifies a URL that resolves to image data to be
included in a notification.

Attributes: name

A name must start with one of the following characters:
_, a-z, A-Z. The rest of the name can include the
following characters: _, a-z, A-Z, 0-9.

Encloses text that specifies the URL.

Example: <image-content name='name'>...</image-content>

function-
context

Description: Enables you to define functions to manipulate event data
in a notification window.

Elements: expressions

specifies container for expressions

properties

specifies a container for properties to generate with
functions.

functions

specifies container for functions

Example: See “Examples of Notification Windows”.

expressions Description Specifies a container for expressions that you use in a
function-context.

Elements: expression

Example: <expressions>
 <expression name='getProtocol'>(.*):</expression>
</expressions>

expression Description: Specifies an expression that you compile a single time
for function-context.

Attributes: name

Name of the expression. A name must start with one of
the following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z, A-Z,
0-9.

Each expression element encloses text that specifies
a valid POSIX regular expression.

Example: <expression name='getProtocol'>(.*):</expression>

XML Language Elements 81

Element Details

properties Description Specifies a container for properties to generate with
functions. Each specified property is used to generate
values to extract from incoming events.

Elements: property-map

property-xml

property-json

property-string

property-list

property-set

Example: <properties>
 <property-map name='' outer='' inner=''>
 [code]
 </property-map>
 <property-xml name=''>[code]</property-xml>
 <property-json name=''>[code]</property-json>
 <property-string name=''>[code]</property-string>
 <property-list name='' delimiter=''>
 [code]
 </property-list>
 <property-set name='' delimiter=''>
 [code]
 </property-set>
 ...
</properties>

property-map Description: Executes the function to generate a map of name-value
pairs to be used for value lookups by name.

Attributes: name

The name of the property. A name must start with one of
the following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z, A-Z,
0-9.

outer

the outer delimiter to use in parsing data

inner

the inner delimiter to use in parsing data

code

encloses text that specifies the function to run to
generate the data to be parsed into a name-value map

Example: <property-map name='' outer='' inner=''>[code]</property-map>

82 Chapter 4 • Using the XML Layer

Element Details

property-xml Description: Executes the function to generate an XML object that
can be used for XPath queries.

Attributes: name

The name of the property. A name must start with one of
the following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z, A-Z,
0-9.

code

encloses text that specifies the function to run to
generate valid XML

Example: <property-xml name=''>[code]</property-xml>

property-json Description: Executes the function to generate a JSON object that can
be used for JSON lookups.

Attributes: name

The name of the property. A name must start with one of
the following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z, A-Z,
0-9.

code

encloses text that specifies the function to run to
generate valid JSON

Example: <property-json name=''>[code]</property-json>

property-
string

Description: Executes the function to generate a string for general use
in functions.

Attributes: name=”string”

The name of the property. A name must start with one of
the following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z, A-Z,
0-9.

code

encloses text that specifies the function to run to
generate a string value

Example: <property-string name='prop'>[code]</property-string>

XML Language Elements 83

Element Details

property-list Description: Executes the function to generate a list of strings to be
used for indexed access.

Attributes: name=”string”

The name of the property. A name must start with one of
the following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z, A-Z,
0-9.

delimiter

the delimiter to use when parsing data

code

encloses text that specifies the function to run to
generate data to be base into a value list

Example: <property-list name='proplist' delimiter=''>
 [code]
</property-list>

property-set Description: Executes the function to generate a set of strings to be
used for value lookups.

Attributes: name=”string”

The name of the property. A name must start with one of
the following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z, A-Z,
0-9.

delimiter

the delimiter to use when parsing data

code

encloses text that specifies the function to run to
generate data to be base into a value set

Example: <property-set name='propset' delimiter=''>
 [code]
</property-set>

84 Chapter 4 • Using the XML Layer

XML Language Elements Relevant to Join Windows

Table 4.6 XML Language Elements Relevant to Join Windows

Element Details

conditions Description: A list of left/right field match pairs for joins.

Elements: fields

Attributes: Enclosed text specifies a list of one or more field elements
that specify the equijoin conditions.

Example: See “Window-Join Examples”.

fields Description: A container for a list of field elements.

Elements: One or more field elements.

For window-join: none.

Attributes: None.

For window-join:

left=name.

A field name from the left input table.

right=name

A field name from the right input table.

Example: See field.

For window-join, see “Window-Join Examples”.

XML Language Elements 85

Element Details

field Description: A definition or a reference to a column in an event.

Elements: None.

Attributes: type= int32 | int64 | double | string
| money | date | stamp

name=field_name

[key= true | false]

The default is false.

Example: <schema name='input_readings'>
 <fields>
 <field type='int32' name='ID' key='true'/>
 <field type='string' name='sensorName'/>
 <field type='double' name='sensorValue'/>
 </fields>
</schema>

join Description: A container in a join window that collects common join
attributes and the conditions element.

Elements: conditions

Attributes: type = fullouter | leftouter |
rightouter | inner

Join type.

[no-regenerate = true | false]

When true, do not regenerate join changes when the
dimension table changes.

use-secondary-index = true | false

When true, automatically generate and maintain a
secondary index to assist table computation when the
dimension table changes.

Note: The first edge element that involves the join
window is considered the left window, and the second
edge element of the join window is considered the right
window.

Example: See “Window-Join Examples”.

86 Chapter 4 • Using the XML Layer

Element Details

left-fields
| right-
fields

Description: Specify fields from the left input or the right input to the
join window to use in output elements.

Attributes: Enclosed text specifies a comma-separated list of fields to
use from the input window. You can use ‘*’ to select all
fields.

Examples: Select all fields from the left input:

<left-fields>'*'<left-fields/>

Select two fields from the right input:

<right-fields>'ID, symbol'</right-fields>

XML Language Elements for Events

Table 4.7 XML Language Elements for Events

Element Details

events Description: A wrapper for a list of event elements.

Elements: One or more event elements.

logic

output

[timefields]

Attributes: None.

Example: See “XML Pattern Window Examples”.

event Description: The definition of an event of interest (EOI) for pattern
matching.

Elements: None.

Attributes: name=”string”

User-specified ID for the event or data source. A name
must start with one of the following characters: _, a-z, A-
Z. The rest of the name can include the following
characters: _, a-z, A-Z, 0-9.

source=name

Name of the input window from which this event
originates.

Enclosed text specifies a WHERE clause that is evaluated
by the expression engine.

Example: See “XML Pattern Window Examples”.

XML Language Elements 87

Element Details

timefields Description: A container of a list of timefield elements.

Elements: timefield

Attributes: None.

Examples: <timefields>
 <timefield>...</timefield>
</timefields>

timefield Description: The field and source pair that specifies the field in a
window to be used to drive the time (instead of clock
time).

Elements: None.

Attributes: field=name

User-specified name of the time field.

source=window

Name of an input window to which to attach this time
field.

Example: <timefield field='firstrun' source='win1'/>

event-loops Description: Specify a container for event loops.

Elements: event-loop-json

event-loop-xml

Attributes: None

Examples: See Chapter 9, “Creating Functional Windows,”.

event-loop-
json

Description: Use specified or referenced JSON to generate an event

Elements: use-json | json reference

json

function-context

Attributes: data=’data’

Examples: See Chapter 9, “Creating Functional Windows,”.

88 Chapter 4 • Using the XML Layer

Element Details

event-loop-
xml

Description: Use specified or referenced XML to generate an event

Elements: use-xml | xml reference

xpath

function-context

Attributes: data=’data’

Example: See Chapter 9, “Creating Functional Windows,”.

use-json Description: Use JSON code in an event loop.

Elements: None

Attributes: Enclosed text specifies the JSON code to use in the event
loop.

Examples: See Chapter 9, “Creating Functional Windows,”.

use-xml Description: Use XML code in an event loop

Elements: None

Attributes: Enclosed text specifies the XML code to use in the event
loop.

Examples: See Chapter 9, “Creating Functional Windows,”.

json Description: Specify the JSON expression to use in an event loop.

Elements: None

Attributes: Enclosed text specifies the JSON expression in order to
retrieve zero or more entities during an event loop.

Example: See Chapter 9, “Creating Functional Windows,”.

xpath Description: Specify an XML expression to use in an event loop.

Elements: None

Attributes: Enclosed text specifies an XML expression in order to
retrieve zero or more entities during an event loop.

Examples: See Chapter 9, “Creating Functional Windows,”.

XML Language Elements 89

XML Language Elements for Connectors

Table 4.8 XML Language Elements for Connectors

Element Details

connectors Description: A list of connector elements.

Elements: One or more connector elements.

Attributes: None.

Example: See connector.

connector Description: A publish or subscribe source-sink for events.

Elements: properties

Each property name=value specified within a
properties element encloses text that specify a valid
connector property value.

Attributes: name = string

Name used as a reference by connector groups.

class = fs | db | mq | pi | project
| smtp | sol | tdata | tibrv | tva |
rmq | sniffer

For more information about these connector classes and
valid connector properties, see Chapter 16, “Using
Connectors,”.

type= publish | subscribe

Example: <connectors>
 <connector class='fs' type='publish>
 <properties>
 <property name='type>
 pub</property>
 <property name='fstype'>
 syslog</property>
 <property name='fsname'>
 data/clean.log.bi</property>
 <property name='growinginputfile'>
 true</property>
 <property name='transactional'>
 true</property>
 <property name='blocksize'>
 128</property>
 </properties>
 </connector>
</connectors>

90 Chapter 4 • Using the XML Layer

Element Details

connector-
entry

Description: Connector within a connector group.

Attributes: name=string

Name of the connector entry. A name must start with one
of the following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z, A-Z,
0-9.

state = “finished” | “running” |
“stopped”

connector-
groups

Description: A container for connector-group elements.

Elements: One or more connector-group elements.

connector-
group

Description: A container of connector-entry elements.

Elements: One or more connector-entry elements.

Attributes: name=string

Name of the connector group. A name must start with
one of the following characters: _, a-z, A-Z. The rest of
the name can include the following characters: _, a-z, A-
Z, 0-9.

project-
connectors

Description: A container for connector-orchestration.

Elements: One or more connector-groups elements.

One or more edge elements.

Note: Project-connector edges connect connector-
groups, and do not posses a slot attribute.

XML Language Elements 91

XML Language Elements for Functions

Table 4.9 XML Language Elements for Functions

Element Details

context-
plugin

Description: A wrapper for a shared library and function name. The
function, when called, returns a dfESPpcontext for
procedural windows and a dfESPscontext for
compute windows.

Elements: None.

Attributes: name=sharedlib

The shared library that contains the context generation
function. A name must start with one of the following
characters: _, a-z, A-Z. The rest of the name can include
the following characters: _, a-z, A-Z, 0-9.

function=name

The function that when called returns a new derived
context for the procedural window's handler routines.

Example: See “XML Examples of Procedural Windows”.

expression Description: An interpreted expression in the DataFlux expression
languages. Variables are usually fields from events or are
variables declared in the expr-initialize element.

Elements: None.

Attributes: Enclosed text is the expression to be processed.

Example: <expression>quantity >= 100</expression>

expr-
initialize

Description: An initialization expression code block, common to
window types that allow the use of expressions.

Elements: initializer

udfs

Example: See “Window-Compute Examples”.

92 Chapter 4 • Using the XML Layer

Element Details

field-expr Description: An algebraic expression whose value is assigned to a field.

Elements: None.

Attributes: Enclosed text specifies the value of aggregate expression.
Includes one or more of the following fields:

• ESP_aSum(fieldName)

• ESP_aMax(fieldName)

• ESP_aMin(fieldName)

• ESP_aAve(fieldName)

• ESP_aStd(fieldName)

• ESP_aWAve(fieldName, fieldName)

• ESP_aCount(fieldName)

• ESP_aLast(fieldName)

• ESP_aFirst(fieldName)

• ESP_aLastNonDelete(fieldName)

• ESP_aLastOpCode(fieldName)

• ESP_aGUID()

• ESP_aCountOpCodes(1|2|3)

For more information, see “Aggregate Functions for
Aggregate Window Field Calculation Expressions”.

For window-join, the enclosed text is any valid SAS
DataFlux scalar expression that uses input field names and
variables from the expr-initialize block. Prefix
input field names from the left table with l_ and input
field names from the right input table with r_.

Example: See “Window-Compute Examples” on page 100.

field-plug Description: A function in a shared library whose returned value is
assigned to a field.

Elements: None.

Attributes: plugin=name

Name of the shared library.

function=name

Name of the function in the shared library.

[additive = true | false]

Defaults to false.

Example: See “Window-Compute Examples”.

XML Language Elements 93

Element Details

field-
selection

Description: A reference to a field whose value is assigned to another
field.

Elements: None.

Attributes: name=ID

Selected field in the output schema. A name must start
with one of the following characters: _, a-z, A-Z. The rest
of the name can include the following characters: _, a-z,
A-Z, 0-9.

source=output_window_field

The output_window_field takes the following
form:l_field_name | rfield_name., where l_
indicates that the field comes from the left window and r_
indicates that the field comes from the right window.

Example: See “Window-Join Examples” on page 101.

finalized-
callback

Description: Enable finalized callback.

For more information, see “Enabling Finalized Callback”.

Attributes: name=string

Specifies the name of the shared library that contains the
callback function.

function=string

Specifies the name of the function.

Example: <finalized-callback name=’library’
function=’fin_callback’>

function-
context

Description: Defines entities to run functions and generate values in an
output event.

Elements: expressions

properties

functions

Attributes: None

Examples: See Chapter 9, “Creating Functional Windows,”.

94 Chapter 4 • Using the XML Layer

Element Details

function Description: Specify a function to execute.

Elements: None

Attributes: name=funcname

A name must start with one of the following characters: _,
a-z, A-Z. The rest of the name can include the following
characters: _, a-z, A-Z, 0-9.

Enclosed text specifies code for the function.

Examples: See Chapter 9, “Creating Functional Windows,”.

generate Description: Specify a function to run that determines whether an
output event should be generated from an input event.

Elements: None

Attributes: Enclosed text specifies code for the function.

Examples: See Chapter 9, “Creating Functional Windows,”.

initializer Description: Information used to initialize the expression engine.

Elements: None

Attributes: type = ‘int32’ | 'int64' | 'double' |
'string' | 'money' |'date' | 'stamp'

Enclosed text specifies the block of code used to initialize
the expression engine. Variables in the initialization block
can be used in the filter expression.

output Description: A wrapper that is used within several window subtypes to
specify how window output is generated.

Elements: field-expr | field-plug

Specifically for window-join: field-expr |
field-plug | field-selection

Attributes: None.

Example: See “Window-Compute Examples”.

XML Language Elements 95

Element Details

plugin Description: A shared library and function name pair that specifies filter
window functions and procedural window handlers.

Elements: None.

Attributes: name=shared_lib

Shared library that contains the specified function. A name
must start with one of the following characters: _, a-z, A-
Z. The rest of the name can include the following
characters: _, a-z, A-Z, 0-9.

function=name

The specified function.

Example: See “XML Examples of Procedural Windows”.

retention Description: Specify the retention policy and value of the retention
element.

Elements: None.

Attributes: type= bytime_jumping | bytime_sliding
| bycount_jumping | bycount_sliding

Retention type:

bytime_jumping : Automatically generate deletes
based on time, purging all events each interval

bytime_sliding: Automatically generate deletes
based on time, continuously purging events.

bycount_jumping: Automatically generate deletes
based on count, purging all events each interval

bycount_sliding: Automatically generate deletes
based on count, continuously purging events.

Enclosed text specifies the value of the retention element.
When specifying a time-based retention policy, specify
number of seconds. When specifying a count-based
retention policy, specify a maximum row count.

[field=name]

Name of a field of type datetime or timestamp. Used to
drive the time-based retention policies. If not specified,
wall clock time is used.

Note: Clock time is set relative to GMT.

Example: <retention type='bycount_sliding'>4096</retention>

96 Chapter 4 • Using the XML Layer

Element Details

schema Description: A named list of fields.

Elements: fields

Attributes: [name=schema_name]

A name must start with one of the following characters: _,
a-z, A-Z. The rest of the name can include the following
characters: _, a-z, A-Z, 0-9.

[copy=string]

name of the window from which to copy schema. Keys in
the copied schema become the keys for this schema.

Example: See field.

schema-
string

Description: Compact notation to specify a schema.

Elements: None.

Attributes: Enclosed text specifies the schema.

Example: <schema-string>ID*:int32,
 sensorName:string,
 sensorValue:double
</schema-string>

splitter-
expr

Description: A wrapper to define an expression that directs events to
one of n different output slots.

Elements: expression

Value of the expression element.

[expr-initialize]

Initialization expression element.

Example: <splitter-expr>
 <expr-initialize>
 <initializer type='int32>
 integer counter
 counter=0
 </initializer>
 </expr-initialize>
 <expression>counter%2</expression>
</splitter-expr>

XML Language Elements 97

Element Details

splitter-
plug

Description: An alternative way to specify splitter functions using a
shared library and a function call.

Attributes: string

Name of shared library containing the splitter function. A
name must start with one of the following characters: _, a-
z, A-Z. The rest of the name can include the following
characters: _, a-z, A-Z, 0-9.

function=function_name

Example: <splitter-plug
 name='libmethod'
 function='splitter'/>

udfs Description: A container of a list of udf elements.

Elements: udf

udf Description: Information about user-defined functions.

Attributes: name= string

Name of the user-defined function. A name must start with
one of the following characters: _, a-z, A-Z. The rest of the
name can include the following characters: _, a-z, A-Z,
0-9.

type = ‘int32’ | 'int64' | 'double' |
'string' | 'money' |'date' | 'stamp'

Enclosed text specifies the user-defined expression body.

XML Language Elements Relevant to the HTTP Interface

Table 4.10 XML Language Elements Relevant to the HTTP Interface

Element Details

http-admin-
server

Description: Enables the configuration of the port through which the
XML server receives HTTP requests.

Elements: <ssl_t>

Attributes: port=portnum

Specify the port number on which to listen for HTTP
administration requests

Examples: <http-admin-server port='46001'/>

98 Chapter 4 • Using the XML Layer

Element Details

http-
pubsub-
server

Description: Enables the configuration of the HTTP publish/subscribe
interface.

Elements: <ssl_t>

Attributes: port=portnum

Specify the port number to use for the publish/subscribe
HTTP server.

Examples: <http-pubsub-server port='46002'/>

http-
servers

Description: A container for HTTP server elements.

Elements http-admin-server | http-pubsub-server

Attributes: None

Examples: <http-servers>
 <http-admin-server port='46001'/>
 <http-pubsub-server port='46002'/>
</http-servers>

ssl Description: Pass security information in order for HTTP-based
connections to be encrypted.

Note: Models that include this element cannot be
imported into SAS Event Stream Processing Studio.

Attributes: certificate=name

Name of the SSL certificate

passphrase=phrase

SSL passphrase

Examples: <ssl certificate=name, passphrase=phrase/>

XML Code Examples

Window-Source Example
<window-source name='logReadings' index='pi_EMPTY'>
<description>
 <![CDATA[
 Illustration of a source window with a single key field
 and a file/socket connector that populates the source
 window from a file in syslog format. The connector is
 set to accommodate a growing file, that is, one that is
 actively being written to.

XML Code Examples 99

]]>
</description>
 <schema>
 <fields>
 <field name='ID' type='int32' key='true'/>
 <field name='udate' type='date'/>
 <field name='hostname' type='string'/>
 <field name='message' type='string'/>
 </fields>
 </schema>
 <connectors>
 <connector class='fs'>
 <properties>
 <property name='type'>pub</property>
 <property name='fstype'>syslog</property>
 <property name='fsname'>data/2013-10-11-clean.log.bi</property>
 <property name='growinginputfile'>true</property>
 <property name='transactional'>true</property>
 <property name='blocksize'>128</property>
 </properties>
 </connector>
 </connectors>
</window-source>

Window-Copy Example
<window-copy name='SrcIPCollision'>
 <description>
 <![CDATA[
 Illustration of a copy window that retains the most recent
 4096 events passed into the copy window. The file/socket
 connector subscribes to the copy window, and outputs the
 windows data to the file named "SrcIPCollision.csv"
]]>
 </description>
 <retention type='bycount_sliding'>4096</retention>
 <connectors>
 <connector class='fs'>
 <properties>
 <property name='type'>sub</property>
 <property name='fstype'>csv</property>
 <property name='fsname'>SrcIPCollision.csv</property>
 <property name='snapshot'>true</property>
 </properties>
 </connector>
 </connectors>
</window-copy>

Window-Compute Examples
<window-compute name='computeWindow'>
 <description>
 <![CDATA[
 Illustration of a compute window that uses an initialization
 expression to declare a static counter, and then uses a

100 Chapter 4 • Using the XML Layer

 field expression to increment the counter, and store this
 incrementing counter in the match field.
]]>
 </description>
 <expr-initialize>
 <initializer type='int32'>
 integer counter counter=0
 </initializer>
 </expr-initialize>
 <schema>
 <fields>
 <field name='ID' type='int32' key='true'/>
 <field name='name' type='string'/>
 <field name='city' type='string'/>
 <field name='match' type='int32'/>
 </fields>
 </schema>
 <output>
 <field-expr>name</field-expr>
 <field-expr>city</field-expr>
 <field-expr>counter=counter+1 return counter</field-expr>
 </output>
</window-compute>

<window-compute name='compute'>
 <description>
 <![CDATA[
 Illustration of a compute window that uses a compiled C
 function (named "rowid") in the shared library (named
 "libmethod.so" on linux or "libmethod.dll" on windows)
 to compute the contents of the output field "rowid".
]]>
 </description>
 <schema>
 <fields>
 <field name='Id' type='int32' key='true'/>
 <field name='rowid' type='int64'/>
 </fields>
 </schema>
 <output>
 <field-plug plugin='libmethod' function='rowid'/>
 </output>
</window-compute>

Window-Join Examples
<window-join name='join_w'>
 <description>
 <![CDATA[
 Illustration of a join window that matches events
 on two fields, "element" and "attribute" present
 in both the left and right input windows. The output fields
 are populated via selecting various fields from the left
 and right input windows using the l_<fieldname> and
 r_<fieldname> conventions.
]]>

XML Code Examples 101

 </description>
 <join type='leftouter'>
 <conditions>
 <fields left='element' right='element'/>
 <fields left='attribute' right='attribute'/>
 </conditions>
 </join>
 <output>
 <field-selection name='ID' source='l_ID'/>
 <field-selection name='element' source='l_element'/>
 <field-selection name='attribute' source='l_attribute'/>
 <field-selection name='value' source='l_value'/>
 <field-selection name='timestamp' source='l_timestamp'/>
 <field-selection name='status' source='l_status'/>
 <field-selection name='switch' source='r_switch'/>
 </output>
</window-join>

<window-join name='AddTraderName'>
 <description>
 <![CDATA[
 Illustration of a join window that matches events on
 the single field, "traderID (in the left input window)"
 and "ID" (in the right input window). The output fields
 are populated via simple algebraic equations from the left
 and right input windows using the l_<fieldname> and
 r_<fieldname> conventions.
]]>
 </description>
 <join type='leftouter'>
 <conditions>
 <fields left='traderID' right='ID' />
 </conditions>
 </join>
 <output>
 <field-expr name='security' type='string'>l_security</field-expr>
 <field-expr name='quantity' type='int32'>l_quantity</field-expr>
 <field-expr name='price' type='double'>100.0*l_price</field-expr>
 <field-expr name='traderID' type='int64'>l_traderID</field-expr>
 <field-expr name='time' type='stamp'>l_time</field-expr>
 <field-expr name='name' type='string'>r_name</field-expr>
 </output>
</window-join>

102 Chapter 4 • Using the XML Layer

Chapter 5

Using SAS Event Stream
Processing Studio

Overview to SAS Event Stream Processing Studio . 103

Using SAS Event Stream Processing Studio . 103

Example: Creating an Aggregation Model . 105

Example: Creating a Compute Model . 111

Example: Creating a Copy with Slots Model . 115

Example: Creating a Filter Model . 121

Example: Creating a Join Model . 125

Example: Creating a Pattern Model . 130

Overview to SAS Event Stream Processing Studio
SAS Event Stream Processing Studio is a web-based client that enables you to create and
test event stream processing models through a visual user interface. The client generates
XML code based on the models that you create. This visual tool shows a model as a data
flow diagram, enabling you to see and control how windows relate and flow into one
another.

Note: On Linux and Microsoft Windows platforms, it is recommended that you use
Google Chrome or Mozilla Firefox to open and use SAS Event Stream Processing
Studio. In addition, SAS Event Stream Processing Studio requires the use of cookies
to maintain the session state. For detailed information about browser support, click

 and select About ð Browsers and Devices.

Using SAS Event Stream Processing Studio
To use SAS Event Stream Processing Studio:

1. Enter the following URL in your browser:

http://host:port/SASEventStreamProcessingStudio

103

The host is the system where SAS Event Stream Processing Studio is installed. The
port is provided to you during product configuration, and is the HTTP port.

The initial SAS Event Stream Processing Studio window appears.

If this is the first time you are using SAS Event Stream Processing Studio, the
window is blank. If not, models listed are those that have already been created or
imported into the modeler.

2. To open an existing model, click the name. The workspace opens, displaying a
diagram of the selected model.

3. To create a new model, click New. You are prompted to choose a new engine or a
new project.

If you select engine, the workspace opens with an engine that contains one project,
which contains one continuous query.

If you select project, the workspace opens with a project that contains one
continuous query.

4. When you first open or create a model, the XML Factory Server window appears.
Enter the Host, Admin Port, and HTTP Pub/Sub Port values that you used to start
the XML server.

For information about how to start an XML server, see “Starting the Server” on page
26.

The model appears in the left pane. The properties of the selected modeling object
appears in the right pane.

5. To design your model, you must select containers and windows. The following
selections are available:

• To select and drag continuous queries to a project, click Containers and select
and drag Continuous Query into your project.

• (Engine models only) To select and drag additional projects into your engine,
click Containers and select and drag Project into your engine.

• To select and drag windows to a continuous query, click Windows and select and
drag the windows that you want to use into your query. A source window is
required for every continuous query. Source windows are then connected to one
or more derived windows (for example, a pattern or join window).

To dock these selections to the left of the model, click and select Dock

Objects Panel. You can then drag objects from the docked panel to the model as
needed.

6. When you are ready to run your model, you can use the Test button to see how it
runs.

Note: Test mode is supported only for projects. It is not supported for engines.

a. Click Test. The Test window appears.

b. Click on a window and select Subscribe. Event data appears in the Results
section.

c. Click Close to close the Test window.

7. When you are finished making changes to a model, click to save your

changes.

104 Chapter 5 • Using SAS Event Stream Processing Studio

8. Click an object in the workspace and then click to view the XML that is

generated. To export the XML, click and select Export Project XML.

9. Click to exit a model.

You are prompted to save any outstanding changes. After responding, you are
returned to the SAS Event Stream Processing Studio window.

10. To delete a model, click Select on the initial SAS Event Stream Processing window.
Select the check box next to a model name and click . The model is removed.

Click Cancel to return to the main window.

11. To exit SAS Event Stream Processing Studio, close the tab or window in which the
application is running.

Use the Import button to import an existing XML program into SAS Event Stream
Processing Studio.

Example: Creating an Aggregation Model
The following example creates a simple model that links a source window to an
aggregation window. This model uses trade data from the XML pattern example to
compile details about total trade volume for each stock trade that appears in a trading
CSV file. It aggregates the total volume of stock that has been traded for each stock
symbol as each event is streamed into the project.

Note: In this example, the aggregate window is fed a stateless stream of Inserts with no
limits set. Aggregate windows are stateful. They group data and compress these
groups into single events. If this aggregate model were to be used in a practical
example, it could grow in an unbounded way. It is recommended that you insert a
copy window with a retention policy before the aggregate window (for example,
only keeping an hour’s worth of data) to control this growth.

1. Open SAS Event Stream Processing Studio. Click New. Select New Project.

2. Enter valid values in the Host, Admin Port, and HTTP Pub/Sub Port fields of the
XML Factory Server window. A blank project appears with a blank continuous query
within it.

3. In the project space, click by the Name field on the Properties pane to

rename the project. The Rename window appears. Enter
Aggregating_Trade_Data and click OK.

4. Select Auto for Subscribe Mode.

5. Click Windows, select Source, and drag it to the continuous query. The workspace
now looks like this:

Example: Creating an Aggregation Model 105

6. Click on the source window. In the properties for the source window, click by

the Name field on the Properties pane to rename the source window. The Rename
window appears. Enter Trade_Data and click OK.

7. Specify a schema for the Trade_Data window by expanding the section and
clicking . You are prompted to enter a new field for the schema. You must

specify one field to be the Key field.

Click to enter each new field.

Enter the following values to specify a schema for this source window:

Name Type Key

ID Int32 Y

symbol String N

currency Int32 N

udate Int64 N

msecs Int32 N

price Double N

quant Int32 N

venue Int32 N

106 Chapter 5 • Using SAS Event Stream Processing Studio

Name Type Key

broker Int32 N

buyer Int32 N

seller Int32 N

buysellflg Int32 N

tradetime Timestamp N

8. Create a publisher connector to the 50k.csv file used in this example. You can find an
example of the aggregation CSV file in the $DFESP_HOME/examples/xml/
pattern_empty_index_xml directory. Do the following:

a. Expand Publisher Connectors. Click . The Connector window appears.

b. Enter Trade_Data_File for Name.

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/pattern_empty_index_xml/50k.csv.

e. Select csv for File type.

f. Click OK to return to the source window properties pane.

9. Expand Advanced Set-Up. Select PI_EMPTY for Index type.

Note that the index icon in the source window changes from the standard icon () to
an icon that indicates the index for the window is empty ().

10. Select the Only accept insert eventscheck box.

11. Click Windows, select Aggregate, and drag it to the continuous query. The
workspace now looks like this:

Example: Creating an Aggregation Model 107

12. Connect the windows through an edge. Click on the small box to the right side of the
Trade_Data window, and drag the arrow to the left side of the Aggregate_1 window.

The aggregate window now accepts trades from the source window. When the
aggregate window has been properly configured, aggregate operations can be
performed on that data.

13. Click the aggregate window. Click by the Name field on the Properties pane

to rename the aggregate window. The Rename window appears. Enter
Agg_Trade_Vol and click OK.

14. Under Output: Key Fields, click . The Select Keys selection box appears.

Select symbol and click OK.

15. Under Output: Calculated Fields, do the following:

108 Chapter 5 • Using SAS Event Stream Processing Studio

a. Select Aggregate Function for Calculation method.

b. Under Calculated Fields, click . The Calculated Fields window appears.

c. Click and enter the following information:

Name Type Aggregate Function

Total_Volume Int32 ESP_aSum(quant)

d. Click OK to return to the aggregate window properties pane.

16. Specify the subscriber connector:

a. Expand Subscriber Connectors. Click . The Connector window appears.

b. Enter Aggregate_Results_File for Name.

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/pattern_empty_index_xml/
aggregate_results.csv.

e. Select csv for File type.

f. Click OK to return to the aggregate window properties pane.

17. Expand Advanced Set-Up and select PI_EMPTY for Index type.

18. Select the check box for Only accept insert events.

19. Click . The workspace now looks like this:

Example: Creating an Aggregation Model 109

20. Test the project. Click Test. The Test window appears.

21. Click on each window (the source window and the aggregate window) in the test
diagram and select Subscribe. A green check mark appears in the corner of each
window, and a Results tab for each window appears in the space below.

Click to view all of the result windows at once.

22. To run the test, click . The results show the symbol and total volume of the stock

that was traded for that symbol (up to that point in time) as data is updated.

Results appear in the tile view similar to the following:

110 Chapter 5 • Using SAS Event Stream Processing Studio

You can also review the results by opening the aggregate_results.csv file in your
output directory.

23. To stop the test and close the Test window, click , and then click Close.

Example: Creating a Compute Model
The following example creates a simple model linking a source window to a compute
window. This model uses trade data to calculate the marked up value of each stock trade
that appears in a trading CSV file.

1. Open SAS Event Stream Processing Studio. Click New. Select New Project.

2. Enter valid values in the Host, Admin Port, and HTTP Pub/Sub Port fields of the
XML Factory Server window. A blank project appears with a blank continuous query
within it.

3. In the project space, click by the Name field on the Properties pane to

rename the project. The Rename window appears. Enter Compute_Trade_Markup
and click OK.

4. Select Auto for Subscribe Mode.

5. Click Windows, select Source, and drag it to the continuous query. The workspace
now looks like this:

6. In the properties for the source window, click by the Name field on the

Properties pane to rename the source window. The Rename window appears. Enter
Trade_Data and click OK.

Example: Creating a Compute Model 111

7. Specify a schema for the Trade_Data window by expanding the section and
clicking . You are prompted to enter a new field for the schema. You must

specify one field to be the Key field.

Click to enter each new field.

Enter the following values to specify a schema for this source window:

Name Type Key

ID Int32 Y

symbol String N

price Double N

markup Double N

8. Create a publisher connector to the input.csv file used in this example. You can find
an example of the CSV file in the $DFESP_HOME/examples/xml/
compute_context_xml directory. Do the following:

a. Expand Publisher Connectors. Click . The Connector window appears.

b. Enter Trade_Data_File for Name.

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/compute_context_xml/input.csv.

e. Select csv for File type.

f. Click OK to return to the source window properties pane.

9. Click Windows, select Compute, and drag it to the continuous query. The
workspace now looks like this:

112 Chapter 5 • Using SAS Event Stream Processing Studio

10. Connect the windows through an edge. Click on the small box to the right side of the
Trade_Data window, and drag the arrow to the left side of the Compute_1 window.

The compute window now accepts data from the source window, and compute
operations can be performed on that data.

11. Click the compute window. Click by the Name field on the Properties pane

to rename the compute window. The Rename window appears. Enter
Compute_Markup and click OK.

12. Under Output Schema, select Expression for Calculation method.

Example: Creating a Compute Model 113

13. Click . The Output Schema: Compute_Markup dialog box appears. Do the

following:

a. Click . Select ID, symbol, price, and markup, and then click OK.

b. Click and enter the following information:

Name Type Expression

Markup_Price Double price*(1+(markup/100))

c. Click OK to return to the compute window properties pane.

14. Specify the subscriber connector:

a. Expand Subscriber Connectors. Click . The Connector window appears.

b. Enter Markup_Results_File for Name.

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/pattern_empty_index_xml/markup_results.csv.

e. Select csv for File type.

f. Click OK to return to the compute window properties pane.

15. Click . The workspace now looks like this:

16. Test the project. Click Test. The Test window appears.

114 Chapter 5 • Using SAS Event Stream Processing Studio

17. Click on each window (the source window and the compute window) in the test
diagram and select Subscribe. A green check mark appears in the corner of each
window, and a Results tab for each window appears in the space below.

Click to view all of the result windows at once.

18. To run the test, click . The results show the price and markup followed by the

calculated marked up price.

Results appear in the tile view similar to the following:

You can also review the results by opening the markup_results.csv file in your output
directory.

19. To stop the test and close the Test window, click , and then click Close.

Example: Creating a Copy with Slots Model
The following example creates a model linking a source window to multiple copy
windows that have been slotted according to a splitter function. In this example, a
trading file contains a stream containing three different IDs. The model splits the file
into multiple output files using the ID, which in this example pertains to a specific stock.

1. Open SAS Event Stream Processing Studio. Click New. Select New Project.

2. Enter valid values in the Host, Admin Port, and HTTP Pub/Sub Port fields of the
XML Factory Server window. A blank project appears with a blank continuous query
within it.

Example: Creating a Copy with Slots Model 115

3. In the project space, click by the Name field on the Properties pane to

rename the project. The Rename window appears. Enter Copy_With_Slots and
click OK.

4. Select Auto for Subscribe Mode.

5. Click Windows, select Source, and drag it to the continuous query. The workspace
now looks like this:

6. Click by the Name field on the Properties pane to rename the source

window. The Rename window appears. Enter Trading_Source and click OK.

7. Specify a schema for the Trading_Source window by expanding the section and
clicking . You are prompted to enter a new field for the schema. You must

specify one field to be the Key field.

Click to enter each new field. Enter the following values to specify a schema

for this source window:

Name Type Key

ID Int32 Y

symbol String N

price Double N

116 Chapter 5 • Using SAS Event Stream Processing Studio

8. Create a publisher connector to the input.csv file used in this example. You can find
an example of the copy with slots CSV file in $DFESP_HOME/examples/xml/
copy_with_slots_xml. Do the following:

a. Expand Publisher Connectors. Click . The Connector window appears.

b. Enter Source_File for Name.

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/copy_with_slots_xml/input.csv.

e. Select csv for File type.

f. Click OK to return to the source window properties pane.

9. Expand Split Output. Check Split output to multiple recipients.

10. Select Expression for Split method.

11. Check Define Expression Engine user-defined functions, and click . The

User Defined Function window appears. Do the following:

a. Enter splitter for Function Name.

b. Select Int32 for Return Type.

c. Enter ID for Function Body.

d. Click OK to return to the source window properties.

12. Enter splitter() for Split Expression.

13. In the project space, click Windows, select Copy, and drag it to the continuous
query. Repeat this process two additional times to create three copy windows in total.
The workspace now looks like this:

Example: Creating a Copy with Slots Model 117

14. Enter properties for the first copy window:

a. Select the Copy_1 window. Click by the Name field on the Properties

pane to rename the copy window. The Rename window appears. Enter
ID_equals_1 and click OK.

b. Expand Subscriber Connectors. Click . The Connector window appears.

c. Enter ID_1_File for Name.

d. Select File and Socket for Type.

e. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/copy_with_slots_xml/ID1.csv.

f. Select csv for File type.

g. Click OK to return to the copy window properties pane.

15. Enter properties for the second copy window:

a. Select the Copy_2 window. Click by the Name field on the Properties

pane to rename the copy window. The Rename window appears. Enter
ID_equals_2 and click OK.

b. Expand Subscriber Connectors. Click . The Connector window appears.

c. Enter ID_2_File for Name.

118 Chapter 5 • Using SAS Event Stream Processing Studio

d. Select File and Socket for Type.

e. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/copy_with_slots_xml/ID2.csv.

f. Select csv for File type.

g. Click OK to return to the copy window properties pane.

16. Enter properties for the third copy window:

a. Select the Copy_3 window. Click by the Name field on the Properties

pane to rename the copy window. The Rename window appears. Enter
ID_equals_3 and click OK.

b. Expand Subscriber Connectors. Click . The Connector window appears.

c. Enter ID_3_File for Name.

d. Select File and Socket for Type.

e. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/copy_with_slots_xml/ID3.csv.

f. Select csv for File type.

g. Click OK to return to the copy window properties pane.

17. Click the box on the right side of the Trading_CSV_File window, and drag the arrow
to the left side of the ID_equals_1 window. In the Edge properties pane, enter 1 for
Slot number.

18. Click the box on the right side of the Trading_CSV_File window, and drag the arrow
to the left side of the ID_equals_2 window. In the Edge properties pane, enter 2 for
Slot number.

19. Click the box on the right side of the Trading_CSV_File window, and drag the arrow
to the left side of the ID_equals_3 window. In the Edge properties pane, enter 3 for
Slot number.

20. Click . The workspace now looks like this:

Example: Creating a Copy with Slots Model 119

21. Test the project. Click Test. The Test window appears.

22. Click each window (the source window and each copy window) in the test diagram
and select Subscribe. A green check mark appears in the corner of each window, and
a Results tab for each window appears in the space below.

Click to view all of the result windows at once.

23. To run the test, click . Results appear in the tile view similar to the following:

120 Chapter 5 • Using SAS Event Stream Processing Studio

24. To stop the test and close the Test window, click , and then click Close.

Example: Creating a Filter Model
The following example creates a simple model linking a source window to a filter
window.

1. Open SAS Event Stream Processing Studio. Click New. Select New Project.

2. Enter valid values in the Host, Admin Port, and HTTP Pub/Sub Port fields of the
XML Factory Server window. A blank project appears with a blank continuous query
within it.

3. In the project space, click by the Name field on the Properties pane to

rename the project. The Rename window appears. Enter Filtering_Trade_Data
and click OK.

4. Select Auto for Subscribe Mode.

5. Click Windows, select Source, and drag it to the continuous query. The workspace
now looks like this:

6. Click by the Name field on the Properties pane to rename the source

window. The Rename window appears. Enter Trade_Data and click OK.

7. Specify a schema for the Trade_Data window by expanding the section and
clicking . You are prompted to enter a new field for the schema. You must

specify one field to be the Key field.

Example: Creating a Filter Model 121

Click to enter each new field.

Enter the following values to specify a schema for this source window:

Name Type Key

ID Int32 Y

symbol String N

quant Int32 N

price Double N

8. Create a publisher connector to the input.csv file used in this example. You can find
an example of the copy with slots CSV file in $DFESP_HOME/examples/xml/
filter_exp_xml. Do the following:

a. Expand Publisher Connectors. Click . The Connector window appears.

b. Enter Source_File for Name.

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/filter_exp_xml/input.csv.

e. Select csv for File type.

f. Click OK to return to the source window properties pane.

9. Click Windows, select Filter, and drag it to the continuous query. The workspace
now looks like this:

122 Chapter 5 • Using SAS Event Stream Processing Studio

10. Connect an edge from the source window to the filter window. Click the box to the
right side of the Trade_Data window, and drag the arrow to the left side of the
Filter_1 window.

The filter window now accepts trades from the source window, and filter operations
can be performed on that data.

11. Click on the filter window. Rename the filter window Filter_Large_Trades.

12. Expand the Output Fields section. Select Expression and enter quant>=3000 in
the Expression box.

13. Specify the subscriber connector:

a. Expand Subscriber Connectors. Click . The Connector window appears.

b. Enter Filter_Results_File for Name.

Example: Creating a Filter Model 123

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/filter_exp_xml/large_trades.csv.

e. Select csv for File type.

f. Click OK to return to the filter window properties pane.

14. To save the new model, click .

15. Click . The workspace now looks like this:

16. Test the project. Click Test. The Test window appears.

17. Click each window (the source window and the filter window) in the test diagram
and select Subscribe. A green check mark appears in the corner of each window, and
a Results tab for each window appears in the space below.

Click to view all of the result windows at once.

18. To run the test, click . The results show which trades were 3000 or more in

volume.

Results appear in the tile view similar to the following:

124 Chapter 5 • Using SAS Event Stream Processing Studio

You can also review the results by opening the large_trades.csv file in your output
directory.

19. To stop the test and close the Test window, click , and then click Close.

Example: Creating a Join Model
The following example creates a model that links two source windows together by a join
window. In this example, one CSV file contains trades, whereas another CSV file
contains name of traders. The model joins the two files into a single output file using the
trader ID.

1. Open SAS Event Stream Processing Studio. Click New. Select New Project.

2. Enter valid values in the Host, Admin Port, and HTTP Pub/Sub Port fields of the
XML Factory Server window. A blank project appears with a blank continuous query
within it.

3. In the project space, click by the Name field on the Properties pane to

rename the project. The Rename window appears. Enter Join_Sources_by_ID
and click OK.

4. Select Auto for Subscribe Mode.

5. Click Windows, select Source, and drag it to the continuous query. Repeat this
process with a second source window. The workspace now looks like this:

Example: Creating a Join Model 125

6. Select the Source_1 window. Click by the Name field on the Properties pane

to rename the source window. The Rename window appears. Enter
Trades_CSV_File and click OK.

7. Specify a schema for the Trades_CSV_File window by expanding the section and
clicking . You are prompted to enter a new field for the schema. You must

specify one field to be the Key field.

Click to enter each new field. Enter the following values to specify a schema

for this source window:

Name Type Key

tradeID Int32 Y

symbol String N

quantity Int32 N

price Double N

traderID Int32 N

126 Chapter 5 • Using SAS Event Stream Processing Studio

8. Create a publisher connection to the trades.csv file used in this example. You can
find an example of the join CSV file in $DFESP_HOME/examples/xml/
join_select_xml. Do the following:

a. Expand Publisher Connectors. Click . The Connector window appears.

b. Enter Trades_File for Name.

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/join_select_xml/trades.csv.

e. Select csv for File type.

f. Click OK to return to the source window properties pane.

9. Select the Source_2 window. Click by the Name field on the Properties pane

to rename the second source window. The Rename window appears. Enter
Traders_CSV_File and click OK.

10. Specify a schema for the Traders_CSV_File window by expanding the section
and clicking . You are prompted to enter a new field for the schema. You must

specify one field to be the Key field.

Click to enter each new field. Enter the following values to specify a schema

for this source window:

Name Type Key

traderID Int32 Y

name String N

11. Create a publisher connection to the traders.csv file used in this example. You can
find an example of this CSV file in $DFESP_HOME/examples/xml/
join_select_xml. Do the following:

a. Expand Publisher Connectors. Click . The Connector window appears.

b. Enter Traders_File for Name.

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/join_select_xml/traders.csv.

e. Select csv for File type.

Example: Creating a Join Model 127

f. Click OK to return to the source window properties pane.

12. In the project space, click Windows, select Join, and drag it to the continuous query.
The workspace now looks like this:

13. Click the small box to the right side of the Trades_CSV_File window, and drag the
arrow to the left side of the Join_1 window.

14. Click on small box to the right side of the Traders_CSV_File window, and drag the
arrow to the left side of the Join_1 window.

15. Enter properties for the join window:

a. Select the Join_1 window. Click by the Name field on the Properties

pane to rename the copy window. The Rename window appears. Enter
Join_by_Trader_ID and click OK.

b. Under Join Conditions, click . Select traderID for both the left and right

source.

c. Select Inner for Join type.

16. Expand Output Fields. Select Select Fields for Calculation method.

17. Click . The Output Schema window appears.

18. Click . The Copy Fields window appears.

19. Select Trades_CSV_File from the Window drop-down list. Select symbol,
quantity, and price. Click OK to return to the Output Schema window.

20. Click a second time. The Copy Fields window appears.

21. Select Traders_CSV_File from the Window drop-down list. Select name, and then
click OK to return to the Output Schema window.

128 Chapter 5 • Using SAS Event Stream Processing Studio

22. Click OK to return to the join window properties pane.

23. Expand Subscriber Connectors. Click . The Connector window appears.

24. Enter Join_Results_File for Name.

25. Select File and Socket for Type.

26. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/join_select_xml/join_results.csv.

27. Select csv for File type.

28. Click OK to return to the join window properties pane.

29. Click . The workspace now looks like this:

30. Test the project. Click Test. The Test window appears.

31. Click the join window in the test diagram and select Subscribe. A green check mark
appears in the corner of the join window. The results for the join window appear in
the space below.

32. To run the test, click . Results appear in the output similar to the following:

Example: Creating a Join Model 129

33. To stop the test and close the Test window, click , and then click Close.

Example: Creating a Pattern Model
The following example creates a model that links a source window to a pattern window,
in this case for the purposes of catching front running. For an overview of pattern
windows, see “Overview of Pattern Windows” on page 215.

1. Open SAS Event Stream Processing Studio. Click New. Select New Project.

2. Enter valid values in the Host, Admin Port, and HTTP Pub/Sub Port fields of the
XML Factory Server window. A blank project appears with a blank continuous query
within it.

3. In the project space, click by the Name field on the Properties pane to

rename the project. The Rename window appears. Enter
Pattern_Matching_Incoming_Trade_Data and click OK.

4. Select Auto for Subscribe Mode.

130 Chapter 5 • Using SAS Event Stream Processing Studio

5. Click Windows, select Source, and drag it to the continuous query. The workspace
now looks like this:

6. Click by the Name field on the Properties pane to rename the source

window. The Rename window appears. Enter Incoming_Trades and click OK.

7. Specify schema for the Incoming_Trades window by expanding the section and
clicking . You are prompted to enter a new field for the schema. You must

specify one field to be the Key field.

Click to enter each new field.

Enter the following values to specify a schema for this source window:

Name Type Key

ID Int32 Y

symbol String N

currency Int32 N

udate Int64 N

msecs Int32 N

Example: Creating a Pattern Model 131

Name Type Key

price Double N

quant Int32 N

venue Int32 N

broker Int32 N

buyer Int32 N

seller Int32 N

buysellflg Int32 N

trade_time Timestamp N

8. Create a publisher connection to the 50k.csv file used in this example. You can find
an example of the pattern matching CSV file in the $DFESP_HOME/
examples/xml/pattern_empty_index_xml directory. Do the following:

a. Expand Publisher Connectors. Click . The Connector window appears.

b. Enter Trade_Data for Name.

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/pattern_empty_index_xml/50k.csv.

e. Select csv for File type.

f. Click OK to return to the source window properties pane.

9. Pattern windows are insert-only with respect to both their input windows and the
output that they produce. Therefore, to avoid errors, you should make the window
stateless (that is, use an empty index).

Expand Advanced Set-Up. Select PI_EMPTY for the Index type and check Only
accept insert events.

Note: Typically, it is recommended that you include a copy window with a retention
policy that follows any insert-only window, but this is outside the scope of this
example.

10. Click Windows, select Pattern, and drag it to the continuous query. The workspace
now looks like this:

132 Chapter 5 • Using SAS Event Stream Processing Studio

11. Click the small box to the right side of the Incoming_Trades window, and drag the
arrow to the left side of the pattern window.

The pattern window now accepts trades from the source window and looks for a
trading pattern.

12. Click on the pattern window. Rename the pattern window Trading_Pattern.

13. Enter ID as Key.

14. Under Patterns, click . The Pattern window appears.

15. The pattern contains two events of interest. The first event consists of the sale of a
certain stock, where the broker is also the seller. The second event happens when the
same broker sells stock for another buyer. This could indicate front running.

In the Pattern window, do the following:

a. Enter Broker_Surveillance_Model for Name.

Example: Creating a Pattern Model 133

b. At the top of the pattern drop-down list, select In the following order, all of
these.

c. Click and enter 600 seconds for Time limit. This catches any events of

interest that are within 10 minutes of each other.

d. Enter e1 for the Name of the first event of interest. The Input Window should
read Incoming_Trades.

e. Enter or select the following criteria to catch the first event:

Binding variable or field Operator Equation

buysellflg == 0

broker == seller

s == symbol

b == broker

f. Add a second event of interest. Click at the top of the Pattern window and

select Add Event of Interest. Enter e2 for the Name of the second event of
interest. The Input Window should read Incoming_Trades.

g. Enter or select the following criteria to catch the first event:

Binding variable or field Operator Equation

buysellflg == 0

broker != seller

s == symbol

b == broker

h. Click OK to close the Pattern window and return to the pattern window
properties pane.

16. The pattern needs to check within the specified time period. Do the following:

a. Expand Pattern Time Limits and click . The Time Keepers window

appears.

b. Select Timestamp field in the Time Keeper column and trade_time in the
Timestamp Field column. Click OK to close the Time Keepers window and
return to the pattern window properties pane.

17. Specify the output schema:

a. Expand Output Schema and click . The Output Fields window appears.

134 Chapter 5 • Using SAS Event Stream Processing Studio

b. On the Output Fields tab, for each field you want to add, click . Specify

the following fields to output:

Name Type

ID1 Int32

ID2 Int32

broker1 Int32

price1 Double

price2 Double

quantity1 Int32

quantity2 Int32

c. On the Broker_Surveillance_Model tab, for each pattern, specify the value of
the fields from the pattern. Select the following values for each field:

Name Type of Value Event Field

ID1 Field e1 ID

ID2 Field e2 ID

broker1 Field e1 broker

price1 Field e1 price

price2 Field e2 price

quantity1 Field e1 quant

quantity2 Field e2 quant

d. Click OK to close the Output Fields window and return to the pattern window
properties pane.

18. Specify the subscriber connector:

a. Expand Subscriber Connectors. Click . The Connector window appears.

b. Enter Pattern_Results_File for Name.

c. Select File and Socket for Type.

d. Enter the path to the CSV file for File name. For example, you might enter /
home/sas/esp32/SASEventStreamProcessingEngine/3.2.0/
examples/xml/pattern_empty_index_xml/pattern_results.csv.

Example: Creating a Pattern Model 135

e. Select csv for File type.

f. Click OK to return to the pattern window properties pane.

19. Expand Advanced Set-Up and select PI_EMPTY for Index type.

20. Click . The workspace now looks like this:

21. Test the project. Click Test. The Test window appears.

22. Click each window (the source window and the pattern window) in the test diagram
and select Subscribe. A green check mark appears in the corner of each window, and
a Results tab for each window appears in the space below.

Click to view all of the result windows at once.

23. To run the test, click . The results show the trade ID for event 1, the trade ID for

event 2, the ID of the broker involved in both trades (which match along both broker
and stock), and the price and quantity of the stock that was traded. More information
can be included by modifying the Output Schema in the pattern window properties.

Results appear in the tile view similar to the following:

136 Chapter 5 • Using SAS Event Stream Processing Studio

24. To stop the test and close the Test window, click , and then click Close.

Example: Creating a Pattern Model 137

138 Chapter 5 • Using SAS Event Stream Processing Studio

Chapter 6

Programming with the C++
Modeling API

Overview to the C++ Modeling API . 139

Dictionary . 140
dfESPengine . 140
dfESPdatavar . 142
dfESPschema . 143
dfESPevent . 144
dfESPeventblock . 145
dfESPproject . 147
dfESPcontquery . 148
dfESPwindow_source . 149
dfESPwindow_aggregate . 150
dfESPwindow_copy . 150
dfESPwindow_compute . 151
dfESPwindow_counter . 154
dfESPwindow_filter . 155
dfESPwindow_functional . 156
dfESPwindow_join . 157
dfESPwindow_notification . 158
dfESPwindow_pattern . 159
dfESPwindow_procedural . 159
dfESPwindow_textCategory . 160
dfESPwindow_textContext . 160
dfESPwindow_textSentiment . 162
dfESPwindow_union . 163

Overview to the C++ Modeling API
The C++ Modeling API provides a set of classes with member functions for each of the
modeling objects. These classes enable event stream processing application developers
to build event stream processing engines as a stand-alone event stream processing server.
Each engine contains one or more projects.

Alternatively, you can embed an event stream processing engine into the process space
of either an existing application or a new application. In that case, the main application
thread is focused on its own chores. It interacts with the embedded engine as needed.
Each project in the engine has its own dedicated thread pool.

139

The following sections describe common C++ modeling objects. Open
$DFESP_HOME/doc/html/index.html in a web browser to access the complete
class and method documentation for C++ modeling objects.

For information about how to define models using the XML Layer, see Chapter 4,
“Using the XML Layer,” on page 25.

For information about how to control the order in which connectors execute, see
“Orchestrating Connectors” on page 298.

Dictionary

dfESPengine
specifies the top-level container or manager of an event stream processing instance. An engine can be a
stand-alone executable or embedded in a C++ application. Engines contain one or more projects.
dfESPengine is a singleton class instance; any process can have at most one dfESPengine within it.

Syntax
DFESP_API static dfESPengine *dfESPengine::initialize(int argc, char *argv[],
dfESPstring id, pubsubSpec_t pubsub, dfESPLoggingLevel logLevel=dfESPLLInfo,
const char *logConfigFile=NULL,
const char *licKeyFile=NULL);

Required Arguments
id

specifies the engine ID

argc
argument count as passed into main

argv
argument vector as passed into main.

Accepts the following options:

• -t textfile.name to write output

• -b badevent.name to write events that failed to be applied to a window index

• -r restore.path to restore a previously persisted engine state.

• -h http-pubsub-port to specify a port for a restful publish/subscribe interface.
Use this to access the server from Streamviewer.

pubsub
indicates whether to enable (pubsub_ENABLE(port_number)) or disable
(pubsub_DISABLE) publish/subscribe for the engine.

Optional Arguments
logLevel

the lower threshold for displayed log messages. The default value is dfESPLLInfo.

140 Chapter 6 • Programming with the C++ Modeling API

logConfigFile
a logging facility configuration file. The default is to configure logging to go to
standard output.

licKeyFile
a fully qualified pathname to a license file. The default is $DFESP_HOME/etc/
license/esp.lic.

Details
You can use the following method to tell an engine how to handle fatal errors that occur
in a project.

static DFESP_API void dfESPengine::setProjectFatalDisposition (projectFatal_t dispositionFlag)

Set the dispositionFlag to one of the following values:

Value Description

dfESPengine::projectFatal_EX
IT_ENGINE

exit with the engine process

dfESPengine::projectFatal_EX
IT_ENGINE_WITH_CORE

exit and generate a core file for debugging, and stop
all processing

dfESPengine::projectFatal_EX
IT_PROJECT

disconnect publish/subscribe, clean up all threads and
memory, and remove the process from the engine
while leaving the engine up and processing other
projects

Example
The following example creates, starts, stops, and shuts down an engine.

// Create the engine container.
dfESPengine *engine;
engine = dfESPengine::initialize(argc, argv, "engine", pubsub_DISABLE);

// Create the rest of the model and then start the projects.
// Creating the rest of the model is covered in the
// subsequent sections.
engine->startProjects();

// The project is running in the background and you can begin
// publishing event streams into the project for execution.

/* Now cleanup and shutdown gracefully */

// First, stop the projects.
engine->stopProjects();

// Next, shutdown the engine and its services (this frees all
// the modeling resources from the engine down through
// the windows).
engine->shutdown();

dfESPengine 141

dfESPdatavar
represents a variable that can hold any data type that the event stream processing engine supports. It is
essentially a C union of event stream processing data types.

Syntax
// construct a new NULL datavar type
DFESP_API dfESPdatavar(dfESPdatatype data_type);
// construct a new NULL datavar type from an existing datavar
DFESP_API dfESPdatavar(dfESPdatavar *dv);
// construct a new NULL datavar type from binary data
DFESP_API dfESPdatavar(dfESPdatatype data_type, void *b);
// construct a new NULL datavar type from a string
DFESP_API dfESPdatavar(dfESPdatatype data_type, const char *s);
// construct a new NULL datavar type from a string
DFESP_API dfESPdatavar(char *dateFormat, dfESPdatatype data_type, const char *s);

Required Arguments
data_type

can be one of the following values:

• ESP_INT32

• ESP_INT64

• ESP_DOUBLE (IEEE)

• ESP_UTF8STR

• ESP_DATETIME (second granularity)

• ESP_TIMESTAMP (microsecond granularity)

• ESP_MONEY (192-bit fixed decimal)

A dfESPdatavar of any of these types can be NULL. Two dfESPdatavars that
are each NULL are not considered equal if the respective types do not match.

dateFormat
specifies the date format to use — supersedes the engine date format

s
specifies the string used to convert to the new data type

dv
specifies the existing data variable to replicate

b
specifies the binary data to convert

Example
Create an empty dfESPdatavar and then set the value as follows:

dfESPdatavar *dv = new dfESPdatavar(dfESPdatavar::ESP_INT32);

142 Chapter 6 • Programming with the C++ Modeling API

dv->setI32(13);

Get access to raw data in the dfESPdatavar using code like this:

void *p = dv->getRawdata(dfESPdatavar::ESP_INT32);

This returns a pointer to actual data, so in this int32 example, you can follow with code
like this:

int32_t x;
memcpy((void *)&x, p, sizeof(int32_t));

This copies the data out of the dfESPdatavar. You can also use the getI32 member
function (a get and set function exists for each data type) as follows:

int32_t x;
x = dv->getI32();

Many convenience functions are available and a complete list is available in the
modeling API documentation included with the installation.

dfESPschema
represents a set of fields that together define event structures. Schemas include the specification of one or
more key fields for the event structure that it defines. Each schema field has a name, a data type, and an
indication as to whether it is part of the event key.

Syntax
DFESP_API dfESPschema(dfESPstring id);
DFESP_API dfESPschema(dfESPstring id, dfESPstring schemaString);

Required Arguments
id

user-supplied ID of the schema

schemaString
specify a serialized representation of the schema. Use the following form:
field1[*]:type,...,fieldn[*]:type

Details
A dfESPschema never represents field data, only the structure of the fields. When a
dfESPschema object is created, it maintains the field names, fields types, and field key
designation in the original order the fields (called the external order) and in the packing
order (called the internal order) for the fields.

SAS Event Stream Processing does not put restrictions on the field names in a schema.
Even so, you need to keep in mind that many times field names are used externally. For
example, there could be connectors or adapters that read the schema and use field names
to reference external columns in databases or in other data sources. It is therefore highly
recommenced that you start field names with an alphanumeric character, and use no
special characters within the name.

In external order, you specify the keys to be on any fields in the schema. In internal
order, the key fields are shifted left to be packed at the start of the schema. For example,
using a compact character representation where an "*" marks key fields, you specify
this:

dfESPschema 143

"ID1*:int32,symbol:string,ID2*:int64,price:double"

This represents a valid schema in external order. If you use this to create a
dfESPschema object, then the object also maintains the following:

"ID1*:int32, ID2*:int64,symbol:string,price:double"

This is the same schema in internal order. It also maintains the permutation vectors
required to transform the external form to the internal form and vice versa.

Creating a dfESPschema object is usually completed by passing the character
representation of the schema to the constructor in external order, for example:

dfESPschema *s = new
 dfESPschema("mySchema","ID1*:int32,symbol:string,ID2*:
 int64,price:double");

A variety of methods are available to get the names, types, and key information of the
fields in either external or internal order. There are also methods to serialize the schema
back to the compact string form from its internal representation.

dfESPevent
contains a packed binary representation of a set of field values. Events contain metadata and payload.
Metadata includes items such as opcodes, indicators, timestamps (for latency measurements), and flags.
Payload consists of the field values.

Syntax
// create a container to hold a reference-counted packed binary record
DFESP_API dfESPevent();
// create an event with fields from format string using the provided delimiter
DFESP_API dfESPevent(dfESPschema *schemaPtr, char *format,
bool &failure, char delimiter=',', bool autogen=false);
//create an event with fields from format string using the provided delimiter and date format
DFESP_API dfESPevent(char *dateFormat, dfESPschema *schemaPtr, char *format,
bool &failure, char delimiter=',', bool autogen=false);

Required Arguments
dateFormat

specifies the date format to use — supersedes the date format specified for the
engine.

schemaPtr
user-supplied schema pointer

format
{i|u|p|d},{n|p},f1,f2,...,fn where

i | u | p | d means Insert, Update, Upsert, and Delete respectively

n | p means normal event or partial-update event

f1, f2,..., fn are the fields that make up the data portion of the event

failure
TRUE when the call fails, and FALSE otherwise

144 Chapter 6 • Programming with the C++ Modeling API

Optional Arguments
delimiter

specifies the field delimiter. The default value is “,”.

autogen
indicates whether to auto-generate key fields for source data. The default value is
false.

Details

The dfESPevent class has member functions for both accessing and setting the
metadata associated with the event. For information about these functions, see the
detailed class and method documentation that is available at $DFESP_HOME/doc/
html.

The field data portion of an event is accessible from the dfESPevent in the following
ways:

• Event field data can be copied out of an event into a dfESPdatavar using the
copyByIntID() or copyByExtID() methods.

• A dfESPdatavar can be set to point into the allocated memory of the
dfESPevent using the getByIntID() or getByExtID() methods.

• A pointer into the dfESPevent packed field data can be obtained through the
getPtrByIntIndex() method.

To assure the best performance, work with binary events whenever possible.

Additional aspects of the dfESPevent class include the ability to do the following:

• Write a compact serialized form of the event to a file using the fwrite() method.

• Read in the serialized event into a memory buffer through the
getSerializeEvent() method.

• Create a new event by passing the serialized version of the event to the
dfESPevent constructor.

dfESPeventblock
An event block typically contains one or more events. Event blocks are published into source windows and
maintained as a container with a unique ID throughout the processing of it within continuous queries.
Events within event blocks usually are transformed as event blocks are processed by windows within a
continuous query.

Syntax
// create an event block containing this single event
DFESP_API static dfESPeventblockPtr *dfESPeventblock::newEventBlock(dfESPeventPtr ep);
// create an event block of this type for the event pointer list provided
DFESP_API static dfESPeventblockPtr
*dfESPeventblock::newEventBlock(dfESPptrList<dfESPeventPtr> *lst, dfESPeventblocktype type);
// create an event block of this type for the event pointer vector provided
DFESP_API static dfESPeventblockPtr
*dfESPeventblock::newEventBlock(dfESPptrVect<dfESPeventPtr> *vec, dfESPeventblocktype type);

dfESPeventblock 145

// create a duplicate event block
DFESP_API static dfESPeventblockPtr *dfESPeventblock::newEventBlock(dfESPeventblockPtr eb);

Required Arguments
ep

specifies an event pointer

type
specifies the event block type (dfESPeventblock::ebtTRANS | ebtNORMAL)

lst
specifies the event pointer list

vec
specifies the event pointer vector

eb
specifies the event block pointer

Details
Publishing clients can use this object to generate a dfESPeventblock object. An
event block is maintained as it is passed between windows in an application, as well as
to subscribing clients. The dfESPeventblock object can report the number of items
that it contains and return a pointer to a contained dfESPevent when given an index.

A unique embedded transaction ID is generated for event blocks as they are absorbed
into a continuous query. Event blocks can also be assigned a unique ID by the publisher.
In addition to the event block ID, the publisher can set a host and port field in event
blocks to establish where the event block is coming from. This meta information is used
by the guaranteed delivery feature to ensure that event blocks make their way from a
publisher.

Event blocks progress through the continuous queries and on to one or more guaranteed
subscribers. The event block meta information is carried with the event block from the
start of processing at a source window. The meta information progresses through all
stages of computation in derived windows and on to any subscribing clients. You can use
the publisher assigned ID, host, and port to tie an output dfESPeventblock back to an
input dfESPeventblock.

Create new dfESPeventblock objects with either transactional
(dfESPeventblock::ebt_TRANS) or normal
(dfESPeventblock::ebt_NORMAL) event semantics. Transaction semantics imply
that each dfESPevent contained in the block must be able to be applied to the index in
a given window. Otherwise, none of the events are applied to the index.

For example, suppose an dfESPeventblock has 100 events and the first event is a
delete event. Further suppose that the delete event fails to be applied because the
underlying event to be deleted is not present. In that case, the remaining 99 events are
ignored, logged, and written to a bad records file (optional). Normal semantics imply
that each event in a dfESPeventblock is treated as an individual event. Therefore, the
failure for one event to apply to an index causes only that event to not be incorporated
into the window.

A dfESPeventblock with more than one event, but without transactional properties
set, can be used to improve performance during the absorption of the event block into
the appropriate source window. You use this to trade off a little bit of latency for a large
gain in throughput. It is best to test the event block optimal size trade-off. For example,

146 Chapter 6 • Programming with the C++ Modeling API

placing 256 events into an event block gives both great latency and throughput. This
performance varies depending on the width of the events.

dfESPproject
specifies a container that typically holds one or more continuous queries. A project is backed by a thread
pool of user-defined size and an optional port.

Syntax
// create project with given id, tagged token off, and no depot location for caching store
DFESP_API dfESPproject *dfESPengine::newProject(dfESPstring id);
// create project with id, tagged token on or off,
// and depot location (which could be an empty string for none)
DFESP_API dfESPproject
*dfESPengine::newProject(dfESPstring id, bool useTaggedToken, dfESPstring depotLocation);

Required Arguments
id

specifies the project ID

useTaggedToken
indicates whether to use project tagged token

depotLocation
specifies where to place the project caching store or stores when a window uses a
caching index (for example, piHLEVELDB). This can be an empty string for no
caching store.

Details
The levels of determinism supported by a project are as follows:

• full concurrency (default) - data received by a window is processed as soon as it is
received and forwarded on to any dependent window. This is the highest performing
mode of computation. In this mode, a project can use any number of threads as
specified by the setNumberOfThreads(max thread) method.

• tagged token - implements single-transaction in, single-transaction out semantics at
each node of the model. In this mode, a window imposes a diamond patter, splitting
the output and then rejoining the split paths together. It merges outputs (per unique
transaction) from each path into a single transaction. A single transaction in the top
of the diamond produces a single output at the bottom.

The newProject() method for the dfESPengine class takes a final parameter (true
| false) that indicates whether tagged token data flow should be enabled. If you do not
specify this optional parameter, the value defaults to false.

• Thus, to specify full concurrency:

dfESPproject *project = engine->newProject("MyProject”);

or

dfESPproject *project = engine->newProject("MyProject”, false);

• And to specify tagged token:

dfESPproject 147

dfESPproject *project = engine->newProject("MyProject”, true);

For easier debugging and full consistency in output for testing, run with tagged token
true. Set the number of threads in a project to 1. This is the slowest way to run a
project. Nonetheless, as long as you are using time-based retention policies, you can be
assured that the output is consistent from run to run.

Example
The following code fragment shows how to create a project, add a memory store, set the
thread pool size, and add continuous queries. It is run with a level of determinism of full
consistency.

// Create the project containers.
dfESPproject *project = engine->newProject("MyProject”);

project->setNumThreads(3); //set the thread pool size for project.

// After you have started the projects using the startProjects()
// method shown in the dfESPengine section above, then you
// can publish or use dfESPproject::injectData() to inject
// event blocks into the source windows. You can also use
// the dfESPproject::quiesce() method to block until all
// of the data in the continuous queries of the project are
// quiesced. You might also want to do this before stopping
// the projects.

project->quiesce();
project->stopProject();

dfESPcontquery
specifies a container that holds one or more directed graphs of windows. Many projects have a single
continuous query container. You can use continuous queries to implement functional modularity for large
projects. You can use the project connector to publish event streams from a window in one continuous
query to a source window in another continuous query, in the same or in another project.

Syntax
DFESP_API dfESPcontquery *dfESPproject::newContquery(dfESPstring id);

Required Argument
id

specifies the continuous query ID

Example
Suppose that there are two windows, swA and swB, that are joined to form window jwC.
Window jwC is aggregated into window awD. Build the continuous query as follows,
using the addEdge function:

dfESPcontquery *cq;
cq = project->newContquery("continuous query #1");

148 Chapter 6 • Programming with the C++ Modeling API

cq->addEdge(swA, jwC); // swA --> jwC
cq->addEdge(swB, jwC); // swB --> jwC
cq->addEdge(jwC, awD); // jwC --> awD

This fully specifies the continuous query with window connectivity, which is a directed
graph.

dfESPwindow_source
specifies a window that is used to ingest event streams of a defined schema into a continuous query.
Source windows can have retention policies. Event streams can be published only into source windows.

Syntax
DFESP_API dfESPwindow_source
*dfESPcontquery::newWindow_source(dfESPstring id, pindex_t index, dfESPstring schema);

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

schema
user-supplied string that specifies the structure of the fields of event data.

Details
The source window is the only window type to which event streams can be published.
All other window types are called derived windows, which transform or analyze event
streams coming into them from other windows.

Example
Here is an example of how to specify a source window:

dfESPwindow_source *sw;
dfESPstring sch = dfESPstring("ID*:int32,symbol:string,price:double");
sw = cq->newWindow_source("mySourceWindow, dfESPindextypes::pi_HASH, sch);

You can set event state retention for source windows and copy windows only when the
window is not specified to be insert-only and when the window index is not set to
pi_EMPTY. All subsequent sibling windows are affected by retention management.
Events are deleted automatically by the engine when they exceed the window’s retention
policy.

Set the retention type on a window with the setRetentionParms() call. You can set
type by count or time, and as either jumping or sliding.

Under the following circumstances, a source window can auto-generate the key value:

• the source window is Insert only

• there is only one key for the window

dfESPwindow_source 149

• the key type is INT64 or string

When these conditions are met and the setAutoGenerateKey() call is made, you do
not have to supply the key value for the incoming event. The source window overwrites
the value with an automatically generated key value. For INT64 keys, the value is an
incremental count (0, 1, 2, ...). For STRING keys, the value is a Globally Unique
Identifier (GUID).

dfESPwindow_aggregate
specifies a window that aggregates events from its incoming event stream. Aggregation is based on the
key fields specified for the aggregate window schema. The result is a collection of groups with aggregated
fields.

Syntax
DFESP_API dfESPwindow_aggregate
*dfESPcontquery::newWindow_aggregate(dfESPstring id, pindex_t index, dfESPstring schema);

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

schema
specifies an aggregate schema. The specification is the same as for any other window
schema, except that key field(s) are the group-by mechanism.

See Also
"Creating Aggregate Windows."

dfESPwindow_copy
specifies a window that maintains a copy of the events from its parent window. Copy windows inherit their
parent's schema. Copy windows are typically used to establish new retention policies.

Syntax
DFESP_API dfESPwindow_copy
*dfESPcontquery::newWindow_copy(dfESPstring id, pindex_t index);

Required Arguments
id

specifies the window ID

150 Chapter 6 • Programming with the C++ Modeling API

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

Details
Set the retention type on a window with the setRetentionParms()call. You can set
type by count or time, and as either jumping or sliding. You can define retention policies
only in source and copy windows.

Example
Here is an example of how to specify a copy window:

dfESPwindow_copy *cw;
cw = cq->newWindow_copy("myCopyWindow",
 dfESPindextypes::pi_HASH);

You can set event state retention for copy windows only when the window is not
specified to be insert-only and when the window index is not set to pi_EMPTY. All
subsequent sibling windows are affected by retention management. Events are deleted
when they exceed the windows retention policy.

Set the retention type on a window with the setRetentionParms() call. You can set
type by count or time, and as either jumping or sliding.

dfESPwindow_compute
specifies a window that enables users to define projections or transformations on input events fields in
order to produce new compute window events. There is a one-to-one cardinality between input events and
generated events for this window type.

Syntax
DFESP_API dfESPwindow_compute
*dfESPcontquery::newWindow_compute(dfESPstring id, pindex_t index, dfESPstring schema);

Required Arguments
id

user-supplied identifier of the compute window

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

schema
user-supplied name of the schema as specified by dfESPstring.

Details
Usually, the keys of a compute window are obtained from the keys of its input window.
However, key values can be changed by designating the new fields as key fields in the
dfESPcompute_window schema. When you change the key value in the compute
window, the new key must also form a primary key for the window. If it does not, you
might encounter errors because of unsuccessful Insert, Update, and Delete operations.

dfESPwindow_compute 151

Examples

Example 1
Here is an example of a specification of a compute window:

dfESPwindow_source *cw;
cw = cq->newWindow_compute("myComputeWindow",
 dfESPindextypes::pi_HASH, sch);

As with the source window, you use dfESPstring to specify a schema. For example

dfESPstring sch = dfESPstring("ID*:int32,symbol:string,price:double");

A compute window needs a field calculation method registered for each non-key field so
that it computes the field value based on incoming event field values. These field
calculation methods can be specified as either of the following:

• a collection of function pointers to C or C++ functions that return dfESPdatavar
values and are passed an event as input

• expressions that use the field names of the input event to compute the values for the
derived event fields

Example 2
The following example creates a compute window using a collection of function
pointers.

Assume the following schema for input events:

"ID*:int32,symbol:string,quantity:int32,price:double"

The compute window passes through the input symbol and price fields. Then it adds a
computed field (called cost) to the end of the event, which multiplies the price with the
quantity.

A scalar function provides the input event and computes price * quantity. Functions that
take events as input and returns a scalar value as a dfESPdatavar use a prototype of
type dfESPscalar_func that is defined in the header file dfESPfuncptr.h.

Here is the scalar function:

dfESPdatavar *priceBYquant(dfESPschema*is, dfESPevent *nep,
 dfESPevent *oep, dfESPscontext *ctx) {
 //
 // If you are getting an update, then nep is the updated
 // record, and oep is the old record.
 //
 // Create a null return value that is of type double.
 //
 dfESPdatavar *ret = new dfESPdatavar(dfESPdatavar::ESP_DOUBLE);
 // If you were called because a delete is being issued, you do not
 // compute anything new.
 //
 if (nep->getOpcode() == dfESPeventcodes::eo_DELETE)
 return ret;
 void *qPtr = nep->getPtrByIntIndex(2); // internal index of
 quant is 2
 void *pPtr = nep->getPtrByIntIndex(3); // internal index of
 price is 3
 if ((qPtr != NULL) && (pPtr != NULL)) {
 double price;

152 Chapter 6 • Programming with the C++ Modeling API

 memcpy((void *) &price, pPtr, sizeof(double));
 int32_t quant;
 memcpy((void *) &quant, qPtr, sizeof(int32_t));
 ret->setDouble(quant*price);
 }
 return ret;
}

Note the dfESPscontext parameter. This parameter contains the input window
pointer, the output schema pointer, and the ID of the field in the output schema
computed by the function. Parameter values are filled in by the engine and passed to all
compute functions. Go to $DFESP_HOME/examples/cxx/compute_context for
another example that shows how to use this parameter.

The following code defines the compute window and registers the non-key scalar
functions:

dfESPstring sch =
 dfESPstring("ID*:int32,symbol:string, price:double,cost:double");

dfESPwindow_compute *cw;
cw = cq->newWindow_compute("myComputeWindow",
 dfESPindextypes::pi_HASH, sch);

// Register as many function pointers as there are non-key
// fields in the output schema. A null for non-key
// field j means copy non-key field j from the input
// event to non-key field j of the output event.
//
cw->addNonKeyFieldCalc((dfESPscalar_func)NULL); // pass
 through the symbol
cw->addNonKeyFieldCalc((dfESPscalar_func)NULL); // pass
 through the price value
cw->addNonKeyFieldCalc(priceBYquant); // compute
 cost = price * quantity

This leaves a fully formed compute window that uses field expression calculation
functions.

Example 3
The following example creates a compute window using field calculation expressions
rather than a function. It uses the same input schema and compute window schema with
the following exceptions:

1. You do not need to write field expression calculation functions.

2. You need to call addNonKeyFieldCalc()using expressions.

Note: Defining the field calculation expressions is typically easier. Field expressions can
perform slower than calculation functions.

dfESPstring sch =
 dfESPstring("ID*:int32,symbol:string,price:double,cost:double");

dfESPwindow_compute *cw;
cw = cq->newWindow_compute("myComputeWindow",
 dfESPindextypes::pi_HASH, sch);

// Register as many field expressions as there are non-key

dfESPwindow_compute 153

// fields in the output schema.
cw->addNonKeyFieldCalc("symbol”); // pass through the symbol
 value
cw->addNonKeyFieldCalc("price”); // pass through the price
 value
cw->addNonKeyFieldCalc("price*quantity”); // compute cost
 = price * quantity

Note: The field calculation expressions can contain references to field names from the
input event schema. They do not contain references to fields in the compute window
schema. Thus, you can use similarly named fields across these schemas (for
example, symbol and price).

Note: Currently, you cannot specify both field calculation expressions and field
calculation functions within a given window.

For more information, see the DataFlux Expression Language: Reference Guide.

dfESPwindow_counter
specifies a window that determines event volumes and throughput rate over a defined recurring interval.

Syntax
DFESP_API dfESPwindow_counter
*dfESPcontquery::newWindow_counter(dfESPstring id, pindex_t index);

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

Details
The schema for counter windows is fixed as follows:

"input*:string,totalCount:int64,totalSeconds:int64,
totalRate:double,intervalCount:int64,intervalSeconds:int64,intervalRate:double"

The key field input is the input window ID, so that there is always only one event per
parent input window.

Example
dfESPproject*project = engine->newProject("project");
dfESPcontquery*contquery = project->newContquery("contquery");
dfESPwindow_source*source =
 contquery->newWindow_source("source",dfESPindextypes::pi_RBTREE,
 dfESPstring("ID*:int32,symbol:string,valstr:string"));
dfESPschema *schema = source->getSchema();
dfESPwindow_counter *counter = contquery->newWindow_counter("counterWindow",
 dfESPindextypes::pi_RBTREE);

154 Chapter 6 • Programming with the C++ Modeling API

counter->setCountInterval("2 seconds");
counter->setClearInterval("10 seconds");
contquery->addEdge(source,0,counter);

dfESPwindow_filter
specifies a window that filters the incoming event stream based on a filter expression or a user-defined
function

Syntax
DFESP_API dfESPwindow_filter
*dfESPcontquery::newWindow_filter(dfESPstring id, pindex_t index);

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

Details
The filter function or expression is set by the
dfESPwindow_filter::setFilter() method. This function or expression is
called each time that a new event block arrives in the filter window. The function or
expression uses the fields of the events that arrive to determine the Boolean result. If the
function or expression evaluates to true, then the event passes through the filter.
Otherwise, the event does not pass into the filter window.

There are two ways to specify the Boolean filter associated with a filter window:

• through a C function that returns a dfESPdatavar of type int32 (return value != 0
==> true; == 0 ==> false)

• by specifying an expression as a character string so that when it is evaluated it
returns true or false

Examples

Example 1
The following example writes and registers a filter user-defined function:

// When quantity is >= 1000, let the event pass
//
//
dfESPdatavarPtr booleanScalarFunction(dfESPschema *is,
dfESPeventPtr ep, dfESPeventPtr oep) {

 // Get the input argument out of the record.
 dfESPdatavar dv(dfESPdatavar::ESP_INT32);
 // Declare a dfESPdatavar that is an int32.
 ep->copyByIntID(2, dv); // extract field #2 into the datavar

dfESPwindow_filter 155

 // Create a new dfESP datavar of int32 type to hold the
 // 0 or 1 that this Boolean function returns.
 //
 dfESPdatavarPtr prv = new dfESPdatavar(dfESPdatavar::ESP_INT32);

 // If field is null, filter always fails.
 //
 if (dv.isNull()) {
 prv->setI32(0); // the return value to 0
 } else {
 // Get the int32 value from the datavar and compare to 1000
 if (dv.getI32() < 1000) {
 prv->setI32(0); // set return value to 0
 } else {
 prv->setI32(1); // set return value to 1
 }
 }
 return prv; // return it.

Place the following code inside main():

dfESPwindow_filter *fw_01;
 fw_01 = cq->newWindow_filter("filterWindow_01",
 dfESPindextypes::pi_RBTREE);
 fw_01->setFilter(booleanScalarFunction);
 // Register the filter UDF.

The setFilter function calls the filter function named booleanScalarFunction that
you had previously registered.

Example 2
The following code example uses filter expressions.

 dfESPwindow_filter *fw_01;
 fw_01 = cq->newWindow_filter("filterWindow_01",
 dfESPindextypes::pi_RBTREE);
 fw_01->setFilter("quant>=1000");
 // Register the filter expression.

For more information about user-supplied filter expressions, see the DataFlux
Expression Language: Reference Guide.

dfESPwindow_functional
specifies a window that enables a user to specify transformations and manipulations of incoming events.
Transformations and manipulations are performed through specific functions, and can result in each input
event generating zero or more functional window events. Incoming event string fields could contain
hierarchical data such as JSON or XML.

Syntax
DFESP_API dfESPwindow_functional
*dfESPcontquery::newWindow_functional(dfESPstring id, pindex_t index, dfESPstring schema);

156 Chapter 6 • Programming with the C++ Modeling API

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

schema
user-defined functional window schema

Details
For more information about the functions that you can use to transform or manipulate
incoming events, see "Functional Window and Notification Window Support Functions".

For technical details, see "Creating Functional Windows".

dfESPwindow_join
specifies a window that joins two incoming event streams based on the specified join type and condition

Syntax
DFESP_API dfESPwindow_join
*dfESPcontquery::newWindow_join(dfESPstring id, joinsub_t jt, pindex_t index,
bool useSecondary=false, bool noregenerates=false);

Required Arguments
id

specifies the window ID

jt
type of join (dfESPwindow_join::dfESPjointypes) to be applied

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

Optional Arguments
useSecondary

a Boolean value that determines whether the join window should auto-generate a
secondary index. The default value is false.

noregenerates
a Boolean value that, when true, implies changes to the dimensional window and
does not cause a rescan of the fact window to produce a block of lookup updates.
The default value is false

Details
The key values of the join-window schema are calculated depending on the join type,
join condition, and input window schema keys. Join windows support equijoins 1-1 (left,
right, or full outer or inner), 1-M and M-1 (left, right, outer or inner), and M-M (inner).

dfESPwindow_join 157

Specify the join condition using the setJoinConditions() member function of the
join window class.

See Also
“Creating Join Windows”.

dfESPwindow_notification
species a window that enables the event stream processing engine to send notifications through email,
text, or multimedia messages. It enables the creation of a number of delivery channels through which to
send notifications. Notification windows do not generate events, and are workflow in nature. They have a
schema that is used to support the functions used in the notification window.

Syntax
DFESP_API dfESPwindow_notification
*dfESPcontquery::newWindow_notification(dfESPstring id, dfESPstring schema);

Required Arguments
id

specifies the window ID

schema
optional window schema that is strictly used by notification window functions. The
value can be NULL.

Details
For more information about the functions that you can use, see “Functional Window and
Notification Window Support Functions”.

For more information, see “Creating Notification Windows”.

Example
The following code sample sets up an email notification to a broker.

dfESPwindow_notification *notification =
 contquery->newWindow_notification("notify",NULL);
 notification->setSmtpConnection("mailhost.fyi.orion.com");

dfESPemail *email = notification->addEmail();
email->setThrottleInterval("5 minutes");
email->setSender("john.doe@orion.com");
email->setRecipients("$email");
email->setSubject("Investment Opportunity");
email->setFrom("ESP");
email->setTo("Wealthy Trader");
email->addText("You traded $quant shares of $symbol at $$price.");
email->setTestMode(true);

contquery->addEdge(joinBrokerData,0,notification);

158 Chapter 6 • Programming with the C++ Modeling API

dfESPwindow_pattern
specifies a window that enables the creation of one or more pattern definitions. Patterns are defined to
detect correlations of multiple events across a set of events-of-interest conditions and temporal conditions.

Syntax
DFESP_API dfESPwindow_pattern
*dfESPcontquery::newWindow_pattern(dfESPstring id, pindex_t index, dfESPstring schema);

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

schema
schema of the pattern window

See Also
“Creating Pattern Windows”.

dfESPwindow_procedural
specifies a window that enables users to register event stream input handlers for the window. The input
handlers process incoming event streams using C++, DS2, or callouts to Base SAS through DATA step
statements. Procedural windows can have one or more input event streams, each requiring its own input
handler.

Syntax
DFESP_API dfESPwindow_procedural
*dfESPcontquery::newWindow_procedural(dfESPstring id, pindex_t index, dfESPstring schema);

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

schema
schema of the procedural window defined by dfESPstring

See Also
“Creating Procedural Windows”.

dfESPwindow_procedural 159

dfESPwindow_textCategory
specifies a window that enables you to use a SAS Text Analytics MCO file to get the categories of a
document in each event's specified string field. This window type is insert only. For each input event, the
window generates zero or more category events.

Syntax
DFESP_API dfESPwindow_textCategory
*dfESPcontquery::newWindow_textCategory(dfESPstring id, pindex_t index, dfESPstring mcoFile,
dfESPstring inputFieldName);

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

mcoFile
path to the MCO file

inputFieldName
user-supplied name for the string field in the input event to analyze

Details
Because this window is insert-only, the following is recommended:

• you follow the window with a copy window so that events can be retained as needed

• you use an empty index for the window

You need a SAS Contextual Analysis license so that you can provide the required
mcoFile .

Text category windows generate their own schema, which is as follows:

key_fields_of_input_window, CategoryNumber*:int32, Category:string, score:double.

The key fields for the window are key_fields_of_input_window and CategoryNumber.

dfESPwindow_textContext
specifies a window that uses SAS Text Analytics LITI files to extract text and classify terms using a
specified input event string field. This window type is insert only. For each input event, zero or more events
are created for this window, depending on how many classified terms are discovered by the text engine.

Syntax
DFESP_API dfESPwindow_textContext
*dfESPcontquery::newWindow_textContext(dfESPstring id, pindex_t index, dfESPstring litiFiles,
dfESPstring inputFieldName);

160 Chapter 6 • Programming with the C++ Modeling API

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary index are supported. For more information, see
“Understanding Primary and Specialized Indexes”.

litiFiles
comma separated list of Liti file paths.

inputFieldName
user-supplied name for the string field in the input event to analyze

Details
You need a SAS Contextual Analysis license so that you can provide the required
litiFiles.

The schema of events output by the textContext window is as follows:

"input event key fields*, termID*:int64, term:string, termLen:int32,
 tag:string, tagLen:int32, locStart:int32, locEnd:int32, wordStart:int32,
wordEnd:int32"

Example
The following example uses an empty index for the textContext window, which is
insert only. That way, the window does not grow endlessly. The textContext window
is followed by a copy window that uses retention to control the growth of the classified
terms.

// Build the source window. We specify the window name, the schema
// for events, the depot used to generate the index and handle
// event storage, and the type of primary index, in this case a
// hash tree
//
dfESPwindow_source *sw_01;
 sw_01 = cq_01->newWindow_source("sourceWindow_01",
 dfESPindextypes::pi_HASH,
 dfESPstring("ID*:int32,tstamp:date,msg:string"));

// Build the textContext window. Specify the window name, the depot
// used for retained events, the type of primary index, the Liti
// files specification string, and the input string field to analyze.
//
// Note that the index for this window is an empty index. This means
// that events created in this window will not be retained in this
// window. This is because textContext windows are insert only,
// hence there is no way of deleting these events using retention
// so without using an empty index this window would grow indefinitely.
//
// To run this example, you need to have licensed SAS
// Contextual Analysis, whose install contains these Liti language files.
// You need to change the litFiles string below to point to your
// installation of the Liti files. Otherwise the text analytics engine
// will not be initialized and classified terms will not be found.

dfESPwindow_textContext 161

//
dfESPwindow_textContext *tcw_01;

dfESPstring litiFiles = "/wire/develop/TableServer/src/common/dev/
 mva-v940m1/tktg/misc/en-ne.li,
 /wire/develop/TableServer/src/common/dev/
 mva-v940m1/tktg/misc/ro-ne.li";

// Place a copy window after the textContext window so that
// it can be used to hold the textContext events with an established
// retention policy. This is a design pattern for insert-only windows.
tcw_01 = cq_01->newWindow_textContext("textContextWindow_01",
 dfESPindextypes::pi_EMPTY,
 litiFiles, "msg");

// Create the copy window.
dfESPwindow_copy *cw_01;
cw_01 = cq_01->newWindow_copy("copyWindow_01",
 dfESPindextypes::pi_RBTREE);

// Now set the window's retention policy to a sliding window of 5 mins.
// This example only has 3 events being injected so the retention
// policy will not take effect, but if we published enough data
// into this model then it would start retaining older events out
// using retention deletes once they aged past 5 mins.
cw_01->setRetentionParms(dfESPindextypes::ret_BYTIME_SLIDING, 300);

Suppose you supply the following strings to the textContext window:

"i,n,1,2010-09-07 16:09:01,I love my Nissan pickup truck"
"i,n,2,2010-09-07 16:09:21,Jerry went to dinner with Renee for last Sunday"
"i,n,3,2010-09-07 16:09:43,Jennifer recently got back from Japan where
 she did game design project work at a university there"

Here are the results.

event[0]: <I,N: 1,0,Nissan pickup,13,VEHICLE,7,10,22,3,5>
event[1]: <I,N: 2,0,Sunday,6,DATE,4,41,46,8,9>
event[2]: <I,N: 2,1,Renee,5,PROP_MISC,9,26,30,5,6>
event[3]: <I,N: 3,0,Japan,5,LOCATION,8,32,36,5,6>
event[4]: <I,N: 3,1,game design project work,24,NOUN_GROUP,10,52,75,9,13>
event[5]: <I,N: 3,2,Jennifer,8,PROP_MISC,9,0,7,0,1>

dfESPwindow_textSentiment
specifies a window that uses a SAS Text Analytics SAM file to get the sentiment of a document that is in
the specified incoming event string field. This window type is insert only. Each input event creates a new
text sentiment event.

162 Chapter 6 • Programming with the C++ Modeling API

Syntax
DFESP_API dfESPwindow_textSentiment
*dfESPcontquery::newWindow_textSentiment(dfESPstring id, pindex_t index, dfESPstring samFile,
dfESPstring inputFieldName);

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

samFile
path to the SAM file

inputFieldName
user-supplied name of the string field in the input event to analyze

Details
Because this window is insert-only, the following is recommended:

• you follow the window with a copy window so that events can be retained as needed

• you use an empty index for the window

You need a SAS Sentiment Analysis license so that you can provide the required
samFile .

The window generates its own schema, which is as follows:
key_fields_of_input_window, sentiment:string,
probability:double.

The sentiment value is “positive”, “neutral”, or “negative”, and the probability
is a value between 0 and 1.

dfESPwindow_union
specifies a window that unites two or more event streams using a strict or a loose policy

Syntax
DFESP_API dfESPwindow_union
*dfESPcontquery::newWindow_union(dfESPstring id, pindex_t index, bool strict=false);

Required Arguments
id

specifies the window ID

index
primary index. Six types of primary indexes are supported. For more information,
see “Understanding Primary and Specialized Indexes”.

dfESPwindow_union 163

Optional Argument
strict

the strict flag — true for strict union and false for loose unions. The default value is
false.

Details
Union windows support both a strict union and a loose union of events from two or more
parent windows. The loose variant (strict = false) turns Updates into Upserts and Deletes
into Safe Deletes. A Safe Delete fails quietly when the event to be deleted does not exist.

Example
Here is an example of how to create a union window:

dfESPwindow_union *uw;
uw = cq->newWindow_union("myUnionWindow",
 dfESPindextypes::pi_HASH, true);

164 Chapter 6 • Programming with the C++ Modeling API

Chapter 7

Creating Aggregate Windows

Overview to Aggregate Windows . 165

Flow of Operations . 166

Using Aggregate Functions . 166
Overview to Using Aggregate Functions . 166
Aggregate Functions for Aggregate Window Field Calculation Expressions 167
Using an Aggregate Function to Add Statistics to an Incoming Event 169
Writing and Using an Aggregate Function . 170
Writing Non-Additive Aggregate Functions . 171
Writing Additive Aggregate Functions . 172

XML Examples of Aggregate Windows . 176

Overview to Aggregate Windows
Aggregate windows are similar to compute windows in that non-key fields are
computed. However, key fields are specified, and not inherited from the input window.
Key fields must correspond to existing fields in the input event. Incoming events are
placed into aggregate groups with each event in a group that has identical values for the
specified key fields.

For example, suppose that the following schema is specified for input events:

"ID*:int32,symbol:string,quantity:int32,price:double"

Suppose that you specify the schema for an aggregate window as follows:

"symbol*:string,totalQuant:int32,maxPrice:double"

When events arrive in the aggregate window, they are placed into aggregate groups
based on the value of the symbol field. Aggregate field calculation functions (written in
C++) or expressions that are registered to the aggregate window must appear in the non-
key fields, in this example totalQuant and maxPrice. Either expressions or
functions must be used for all of the non-key fields. They cannot be mixed. The
functions or expressions are called with a group of events as one of their arguments
every time a new event comes in and modifies one or more groups.

These groups are internally maintained in the dfESPwindow_aggregate class as
dfESPgroupstate objects. Each group is collapsed every time that a new event is
added or removed from a group by running the specified aggregate functions or

165

expressions on all non-key fields. The purpose of the aggregate window is to produce
one aggregated event per group.

Flow of Operations
The flow of operations while processing an aggregate window is as follows:

1. An event, E arrives and the appropriate group is found, called G. This is done by
looking at the values in the incoming event that correspond to the key fields in the
aggregate window

2. The event E is merged into the group G. The key of the output event is formed from
the group-by fields of G.

3. Each non-key field of the output schema is computed by calling an aggregate
function with the group G as input. The aggregate function computes a scalar value
for the corresponding non-key field.

4. The correct output event is generated and output.

Using Aggregate Functions

Overview to Using Aggregate Functions
During aggregation, events that enter an aggregate window are placed into a group based
on the aggregate window’s key fields. Aggregate functions are run on each group to
compute each non-key field of the aggregate window.

In a sense, the aggregate window partitions input events according to its keys. These
partitions are called aggregate groups. The functions that are specified for non-key fields
of the aggregate window are special functions. They operate on groups of values and
collapse the group to a single scalar value.

Here is a simple example of aggregation:

Source Window
Schema: id*int32, symbol:string, quant: int32

Retention type: Volume (count=2)
Retention sub-type: Sliding

Aggregate Window
Schema: symbol*:string, sumQuant: int32

The key of the aggregate window is symbol. It has only one non-key field, sumQuant,
which is the sum of the field quant arriving from the source window.

The function that computes sums of field values is ESP_aSum(fieldname). Here, the
aggregate window has one non-key field that is computed as ESP_aSum(quant).
Conceptually, when an event enters the aggregate window, it is added to the group, and
the function ESP_aSum(quant) is run, producing a new sum for the group.

166 Chapter 7 • Creating Aggregate Windows

Aggregate Functions for Aggregate Window Field Calculation
Expressions

The following aggregate functions are available for aggregate window field calculation
expressions:

Aggregate Function Returns

ESP_aAve(fieldname) average of the group

ESP_aCount() number of events in the group

ESP_aCountDistinct(fieldname) the number of distinct non-null values in the
column specified by field name within a
group

ESP_aCountNonNull(fieldname) the number of events with non-null values in
the column for the specified field name
within the group

ESP_aCountNull(fieldname) the number of events with null values in the
column for the specified field name within
the group

ESP_aCountOpcodes(opcode) count of the number of events matching
opcode for group

ESP_aFirst(fieldname) the first event added to the group

ESP_aGUID() a unique identifier

ESP_aLag(fieldname,lag_value) a lag value where the following holds:

• ESP_aLag(fieldname,0) ==
ESPaLast(fieldname)

• ESP_aLag(fieldname,1) returns
the second lag. This is the previous value
of fieldname that affected the group.

ESP_aLast(fieldname) field from the last record that affected the
group

ESP_aLastOpcodes(opcode) the opcode of the last record to affect the
group

ESP_aMax(fieldname) maximum of the group

ESP_aMin(fieldname) minimum of the group

ESP_aMode(fieldname) mode, or most popular of the group

ESP_aStd(fieldname) standard deviation of the group

Using Aggregate Functions 167

Aggregate Function Returns

ESP_aSum(fieldname) sum of the group

ESP_aWAve(weight_fieldname,
payload_fieldname)

weighted group average

The following functions are always additive:

• ESP_aAve

• ESP_aCount

• ESP_aCountOpcodes

• ESP_aCountDistinct

• ESP_aGUID

• ESP_aLastOpcode

• ESP_aMode

• ESP_aStd

• ESP_aSum

• ESP_aWAve

The following functions are additive only when they get Inserts:

• ESP_aCountNonNull

• ESP_aCountNull

• ESP_aFirst

• ESP_aLast

• ESP_aMax

• ESP_aMin

You can easily use the built-in aggregate functions for non-key field calculation
expressions as follows:

dfESPwindow_aggregate *aw_01;
 aw_01 = cq->newWindow_aggregate("aggregateWindow_01",
 dfESPindextypes::pi_RBTREE,
 aggr_schema);
 aw_01->addNonKeyFieldCalc("ESP_aSum(quantity)"); // sum(quantity)
 aw_01->addNonKeyFieldCalc("ESP_aMax(quantity)”); // max(quantity)

Using aggregate field expressions is simpler than aggregate functions, but they perform
slower, and the number of functions is limited.

Note: In ESP_aSum, ESP_aMax, ESP_aMin, ESP_aAve, ESP_aStd, and
ESP_aWAve, null values in a field are ignored. Therefore, they do not contribute to
the computation.

The functions ESP_aSum, ESP_aFirst, ESP_aWAve, ESP_aStd, ESP_aCount,
ESP_aLast, ESP_aFirst, ESP_aLastNonDelete, ESP_aLastOpCode,
ESP_aCountOpcodes are all additive. That is, they can be calculated from retained
state and the values determined from the incoming event. They do not need to maintain a
group state. This means that if these are the only functions used in a

168 Chapter 7 • Creating Aggregate Windows

dfESPwindow_aggrgate instance, special optimizations are made and speed-ups of
an order of magnitude in the aggregate window processing can occur.

The dfESPgroupstate class is used internally to maintain the groups in an
aggregation and an instance of the dfESPgroupstate is passed to aggregate
functions. The signature of an aggregate function is as follows:

 typedef dfESPdatavarPtr (*dfESPaggregate_func)(dfESPschema *is,
 dfESPeventPtr nep, dfESPeventPtr oep,
 dfESPgroupstate *gs);

You can find this definition in the api/dfESPfuncptr.h file.

The dfESPgroupstate object does not only act as a container for a set of events
belonging to the same group, but it also maintains a state vector of dfESPdatavars,
one state vector per non-key field, that can be used by aggregate functions to store a
field’s state. This enables quick incremental aggregate function updates when a new
group member arrives.

Using an Aggregate Function to Add Statistics to an Incoming
Event

You can use the ESP_aLast(fieldName) aggregate function to pass incoming fields
into the aggregate event that is created. This can be useful to add statistics to events
through the aggregate window without having to use an aggregate window followed by a
join window. Alternatively, using a join window after an aggregate window joins the
aggregate calculations or event to the same event that feeds into the aggregate window.
But the results in that case might not be optimal.

For example, suppose that this is the incoming event schema:

"ID*:int64,symbol:string,time:datetime,price:double"

Suppose that with this incoming event schema, you want to add an aggregate statistic:

"ID*:int64,symbol:string,time:datetime,price:double,ave_price:double"

There, the average is calculated over the group with the same “symbol.”

Alternatively, you can define a single aggregate stream, with the following schema:

"ID:int64,symbol*:string,time:datetime,price:double,ave_price:double"

Note: The group-by is the key of the aggregation, which is "symbol".

Next, use dfESPwindow_aggregate::addNonKeyFieldCalc(expression) to
register the following aggregation functions for each non-key field of this window,
which in this case are “ID,” “time,” “price,” and “ave_price”:

awPtr->addNonKeyFieldCalc("ESP_aLast(ID)”);
awPtr->addNonKeyFieldCalc("ESP_aLast(time)”);
awPtr->addNonKeyFieldCalc("ESP_aLast(price)”);
awPtr->addNonKeyFieldCalc("ESP_aAve(price)”);

Suppose that the following events come into the aggregate window:

insert: 1, "ibm", 09/13/2001T10:48:00, 100.00
insert: 2, "orc", 09/13/2001T10:48:01, 127.00
insert: 3, "ibm", 09/13/2001T10:48:02, 102.00
insert: 4, "orc", 09/13/2001T10:48:03, 125.00
insert: 5, "orc", 09/13/2001T10:48:04, 126.00

Using Aggregate Functions 169

The aggregate stream produces the following:

insert: 1, "ibm", 09/13/2001T10:48:00, 100.00, 100.00
insert: 2, "orc", 09/13/2001T10:48:01, 127.00, 127.00
update: 3, "ibm", 09/13/2001T10:48:00, 102.00, 101.00
update: 4, "orc", 09/13/2001T10:48:01, 125.00, 126.00
update: 5, "orc", 09/13/2001T10:48:01, 126.00, 126.00

By using aLast(fieldname) and then adding the aggregate fields of interest, you can
avoid the subsequent join window. This makes the modeling cleaner.

Writing and Using an Aggregate Function
Write aggregate functions with zero, one, two or three arguments. The arguments must
be either integer-valued DataFlux expressions, integer constants, or field names in the
input schema for the aggregation.

The most commonly used aggregate functions are one parameter functions with an input
schema field name (for example, the built-in aggregation function
ESP_aMax(fieldname)). For field names in the input schema, the field index into the
input event is passed into the aggregate function, not the value of the field. This is
important when you deal with groups. You might need to iterate over all events in the
group and extract the values by event index from each input event.

After you write an aggregate function, embed it in C++ code in order to use it in your
event stream processing application. How to do this is documented in an example
provided in $DFESP_HOME/examples/cxx/aggregate_userdef.

Copy your function into $DFESP_HOME/examples/cxx/
aggregate_userdef/src/functions.cpp. Suppose your function is named
My_Aggregation_Function. At the bottom of functions.cpp, create a wrapper
function for your aggregation function.

// the uMyFunction wrapper:
 // every aggregation function must be wrapped like this.
 //
 int dfESPaggrfunc_uMyFunctionWrapper(dfESP_EXPengine_t *e,
 dfESP_EXPsym_value_t *returnval,
 int parmcount,
 dfESP_EXPsym_value_t **parms)
 {
 return dfESPaggrfunc_Wrapper((void *)my_aggrergation_function, e,
 returnval, parmcount, parms);
 }

Create an entry in the user-defined function list for the wrapper function.

// SAS Event Stream Processing calls this function to get all user-defined
 // aggregation functions during the initialization stage.
 //
 void add_user_aggrFunctions() {
 dfESPengine *e = dfESPengine::getEngine();

 dfESPptrList<aggr_function_t *> &uFuncts = e->getUDAFs();

 // push back as many user defined functions as you like:
 // the parameters are: <callable name>, <function pointer>,
 // <num args>, <additive flag>, <additive flag for insert only>,
 // <description>

170 Chapter 7 • Creating Aggregate Windows

 uFuncts.push_back(new aggr_function_t("USER_myFunction",
 (void *)dfESPaggrfunc_uMyFunctionWrapper,
 1, true, true, "description"));
 }

Adjust the number of arguments, additive flags, and the description field accordingly.
The sample code $DFESP_HOME/examples/cxx/aggregate_userdef/src/
functions.cpp provides two complete examples. The makefile distributed with the
sample code produces a shared library in the aggregate_userdef/plugins
directory. Copy this plug-in to $DFESP_HOME/lib and name it libdfxesp_udafD-
major.minor.

Writing Non-Additive Aggregate Functions
The simplest aggregate sum function does not maintain state and is not additive. The
function iterates through each event in a group to aggregate. It requires the aggregation
window to maintain a copy of every input event for all groups.

The following code performs these basic steps:

1. Look at the input and output types and verify compatibility.

2. Initialize a return variable of the specified output type.

3. Loop across all events in the group and perform the aggregation function.

4. Check for computational errors and return the error or the result .

// a non-additive summation function
 //
 // vgs is the groupstate object passed as a (void *) pointer
 // fID is the filed ID in internal field order of the field on
 // which we sum.
 dfESPdatavarPtr uSum_nadd(void *vgs, size_t fID) {

 dfESPdatavar *rdv;
 // placeholder for return value
 dfESPgroupstate *gs = (dfESPgroupstate *)vgs;
 // the passed groupstate cast back to dfESPgroupstate object.

 // get the 1) aggregate schema (output schema)
 // and 2) the schema of input events
 //
 dfESPschema *aSchema = gs->getAggregateSchema();
 dfESPschema *iSchema = gs->getInputSchema();

 // get the type of 1) the field we are computing in the aggregate schema
 // and 2) the input field we are summing.
 //
 dfESPdatavar::dfESPdatatype aType =
 aSchema->getTypeEO(gs->getOperField());
 dfESPdatavar::dfESPdatatype iType =
 iSchema->getTypeIO(fID);

 dvn_error_t retCode = dvn_noError;
 // return code for using the datavar numerics package.

 // If the input fields or the output field is non-numeric,

Using Aggregate Functions 171

 // flag an error.
 //
 if ((!isNumeric(aType)) || (!isNumeric(iType))) {
 cerr << "summation must work on numeric input, produce numeric output."
 << endl;
 return NULL;
 }

 // in the ESP type system, INT32 < INT64 < DOUBLE < DECSECT.
 // This checks compatibility. The output type must be greater
 // equal the input type. i.e. we cannot sum a column of int64
 // and puit them into an int32 variable.
 //
 if (iType > aType) {
 cerr << "output type is not precise enough for input type" << endl;
 return NULL;
 }

 dfESPeventPtr nev = gs->getNewEvent();
 dfESPeventPtr oev = gs->getOldEvent();

 // create the datavar to return, of the output type and set to zero.
 //
 rdv = new dfESPdatavar(aType); // NULL by default.
 rdv->makeZero();

 dfESPeventPtr gEv = gs->getFirst(); // get the first event in the group.
 dfESPdatavar iNdv(iType); // a place to hold the input variable.
 while (gEv) { // iterarate until no more events.
 gEv->copyByIntID(fID, &iNdv); // extract value from record into iNdv;

 if (!iNdv.isNull()) { // input not null
 if ((retCode = dv_add(rdv, rdv, &iNdv)) != dvn_noError)
 break; // rdv = add(rdv, iNdv)
 }
 gEv = gs->getNext(); // get the first event in the group.
 }

 if (retCode != dvn_noError) { // if any of our arithmitic fails.
 rdv->null(); // return a null value.
 cerr << "uSum() got an arithmetic error in summing up values" << endl;
 }

 return rdv;

Writing Additive Aggregate Functions
Aggregate functions that compute themselves based on previous field state and a new
field value are called additive aggregation functions. These functions provide
computational advantages over aggregate functions.

An additive aggregate function can be complex for two reasons:

• They must look at the current state (for example, the last computed state).

172 Chapter 7 • Creating Aggregate Windows

• They must evaluate the type of incoming event to make proper adjustments.

Suppose that you keep the state of the last value of the group's summation of a field.
When a new event arrives, you can conditionally adjust the state base on whether the
incoming event is an Insert, Delete, or Update. For an Insert event, you simply increase
the state by the new value. For a Delete, you decrease the state by the deleted value. For
an Update, you increase and decrease by the new and old values respectively. Now the
function never has to loop through all group values. It can determine the new sum based
on the previous state and the latest event that affects the group.

The following code performs these basic steps:

1. Look at the input and output types and verify compatibility.

2. Initialize a return variable of the specified output type.

3. Determine whether the function has been called before. That is, is there a previous
state value?

• If so, retrieve it for use.

• If not, create a new group with an arriving insert so that you can set the state to
the incoming value.

4. Switch on the opcode and adjust the state value.

5. Check for computational errors and return the error value or the state value as the
result.

// an additive summation function
 //
 // vgs is the groupstate object passed as a (void *) pointer
 // fID is the filed ID in internal field order of the field on
 // which we sum.
 dfESPdatavarPtr uSum_add(void *vgs, size_t fID) {

 dfESPdatavar *rdv;
 // placeholder for return value
 dfESPgroupstate *gs = (dfESPgroupstate *)vgs;
 // the passed groupstate cast back to dfESPgroupstate object.

 // get the 1) aggregate schema (output schema)
 // and 2) the schema of input events
 //
 dfESPschema *aSchema = gs->getAggregateSchema();
 dfESPschema *iSchema = gs->getInputSchema();

 // get the type of 1) the field we are computing in the aggregate schema
 // and 2) the input field we are summing.
 //
 dfESPdatavar::dfESPdatatype aType =
 aSchema->getTypeEO(gs->getOperField());
 dfESPdatavar::dfESPdatatype iType =
 iSchema->getTypeIO(fID);

 dvn_error_t retCode = dvn_noError;
 // return code for using the datavar numerics package.

 // If the input fields or the output field is non-numeric,

Using Aggregate Functions 173

 // flag an error.
 //
 if ((!isNumeric(aType)) || (!isNumeric(iType))) {
 cerr << "summation must work on numeric input, produce numeric output."
 << endl;
 return NULL;
 }

 // in the ESP type system, INT32 < INT64 < DOUBLE < DECSECT.
 // This checks compatibility. The output type must be greater
 // equal the input type. i.e. we cannot sum a column of int64
 // and puit them into an int32 variable.
 //
 if (iType > aType) {
 cerr << "output type is not precise enough for input type" << endl;
 return NULL;
 }

 // fetch the input event from the groupstate object (nev)
 // and, in the case of an update, the old event that
 // is being updated (oev)
 //
 dfESPeventPtr nev = gs->getNewEvent();
 dfESPeventPtr oev = gs->getOldEvent();

 // Get the new value out of the input record
 //
 dfESPdatavar iNdv(iType);
 // a place to hold the input variable.
 dfESPdatavar iOdv(iType);
 // a place to hold the input variable (old in upd case).
 nev->copyByIntID(fID, iNdv);
 // extract input value (no copy) to it (from new record)

 // Get the old value out of the input record (update)
 //
 if (oev) {
 oev->copyByIntID(fID, iOdv);
 // extract input value to it (old record)
 }

 // Note: getStateVector() returns a reference to the state vector for
 // the field we are computing inside the group state object.
 //
 dfESPptrVect<dfESPdatavarPtr> &state = gs->getStateVector();

 // create the datavar to return, of the output type and set to zero.
 //
 rdv = new dfESPdatavar(aType); // NULL by default.
 rdv->makeZero();

 // If the state has never been set, we set it and return.
 //
 if (state.empty()) {
 dv_assign(rdv, &iNdv);
 // result = input

174 Chapter 7 • Creating Aggregate Windows

 state.push_back(new dfESPdatavar(rdv));
 // make a copy and push as state
 return rdv;
 }

 // at this point we have a state,
 // so lets see how we should adjust it based on opcode.
 //

 dfESPeventcodes::dfESPeventopcodes opCode = nev->getOpcode();
 bool badOpcode = false;
 int c = 0;
 switch (opCode) {
 case dfESPeventcodes::eo_INSERT:
 if (!iNdv.isNull())
 retCode = dv_add(state[0], state[0], &iNdv);
 break;
 case dfESPeventcodes::eo_DELETE:
 if (!iNdv.isNull())
 retCode = dv_subtract(state[0], state[0], &iNdv);
 break;
 case dfESPeventcodes::eo_UPDATEBLOCK:
 retCode = dv_compare(c, &iNdv, &iOdv);
 if (retCode != dvn_noError) break;
 if (c == 0) // the field value did not change.
 break;
 if (!iNdv.isNull())
 // add in the update value
 retCode = dv_add(state[0], state[0], &iNdv);
 if (retCode != dvn_noError) break;
 if (!iOdv.isNull())
 // subtract out the old value
 retCode = dv_subtract(state[0], state[0], &iOdv);
 break;
 default:
 cerr << "got a bad opcode when running uSum_add()" << endl;
 badOpcode = true;
 }

 if (badOpcode || (retCode != dvn_noError)) {
 rdv->null();
 // return a null value.
 cerr << "uSum() got an arithmetic error summing up values" << endl;
 } else
 dv_assign(rdv, state[0]);
 // return the adjusted state value

 return rdv;
 }

Even though it is possible to use the Sum() aggregate function to iterate over the group
and compute a new sum when a new group changes, faster results are obtained when you
maintain the Sum() in a dfESPdatavar in the dfESPgroupstate object and
increment or decrement the object by the incoming value, provided that the new event is
an Insert, Update, or Delete. The function then adjusts this field state so that it is up-to-
date and can be used again when another change to the group occurs.

Using Aggregate Functions 175

XML Examples of Aggregate Windows
<window-aggregate name='readingsPerElementAndAttribute'>
 <schema>
 <fields>
 <field name='element' type='string' key='true'/>
 <field name='attribute' type='string' key='true'/>
 <field name='value' type='double'/>
 <field name='timestamp' type='stamp'/>
 <field name='elementReadingCount' type='int64'/>
 <field name='startTime' type='stamp'/>
 <field name='endTime' type='stamp'/>
 <field name='valueAve' type='double'/>
 <field name='valueMin' type='double'/>
 <field name='valueMax' type='double'/>
 <field name='valueStd' type='double'/>
 </fields>
 </schema>
 <output>
 <field-expr>ESP_aLast(value)</field-expr>
 <field-expr>ESP_aLast(timestamp)</field-expr>
 <field-expr>ESP_aCountOpcodes(1)</field-expr>
 <field-expr>ESP_aFirst(timestamp)</field-expr>
 <field-expr>ESP_aLast(timestamp)</field-expr>
 <field-expr>ESP_aAve(value)</field-expr>
 <field-expr>ESP_aMin(value)</field-expr>
 <field-expr>ESP_aMax(value)</field-expr>
 <field-expr>ESP_aStd(value)</field-expr>
 </output>
</window-aggregate>

<window-aggregate name='aw_01'>
 <schema>
 <fields>
 <field name='symbol' type='string' key='true'/>
 <field name='totalQuant' type='int32'/>
 <field name='maxPrice' type='double'/>
 </fields>
 </schema>
 <output>
 <field-plug function='summationAggr' plugin='libmethod' additive='true'/>
 <field-plug function='maximumAggr' plugin='libmethod' additive='false'/>
 </output>
 <connectors>
 <connector class='fs'>
 <properties>
 <property name='type'>sub</property>
 <property name='fstype'>csv</property>
 <property name='fsname'>aggregate.csv</property>
 <property name='snapshot'>true</property>
 </properties>
 </connector>
 </connectors>

176 Chapter 7 • Creating Aggregate Windows

</window-aggregate>

XML Examples of Aggregate Windows 177

178 Chapter 7 • Creating Aggregate Windows

Chapter 8

Creating Counter Windows

Overview to Counter Windows . 179

Examples . 180
XML Code Examples . 180
C++ Code Examples . 181

Overview to Counter Windows
A counter window enables you to see how many events are going through your model
and the rate at which they are being processed.

The XML element to create a counter window is as follows:

<window-counter name='name' count-interval='period' clear-interval='cperiod'/>

Field Description

name The name of the window.

count-interval
(optional)

Period of time for which to generate a current event processing
rate, specified in '[value] [unit]'.

clear-interval
(optional)

Period of inactivity after which all counter data is reset to 0,
specified in '[value] [unit]'.

You cannot configure the schema for a counter window; it is hardcoded as follows:

"input*:string,totalCount:int64,totalSeconds:int64,totalRate:d
ouble,intervalCount:int64,intervalSeconds:int64,intervalRate:d
ouble" .

The value of input is the name of the window that sent the event to the counter window.

The opcode for generated events is based on the index of the counter window. If the
index is pi_EMPTY, the opcode is Insert. For any other index value, the opcode is
Upsert.

When you specify a count-interval, the counter window reports performance
statistics regularly at that interval. Event generation can be driven by either the arrival of
an event or by the window receiving a heartbeat. The window checks to see whether it is

179

time to report the values and generate an event. This event contains overall values plus
the interval values:

<window-counter name='counter'
 count-interval='2 seconds'
 clear-interval='30 seconds'/>
 <event opcode='upsert' window='trades/trades/counter'>
 <value name='input'>trades</value>
 <value name='intervalCount'>288215</value>
 <value name='intervalRate'>144108</value>
 <value name='intervalSeconds'>2</value>
 <value name='totalCount'>794312</value>
 <value name='totalRate'>132385</value>
 <value name='totalSeconds'>6</value>
 </event>

If you do not specify count-interval, an event with performance numbers is
generated each time the window receives a heartbeat. This event contains only overall
values:

<window-counter name='counter'/>
 <event opcode='upsert' window='trades/trades/counter'>
 <value name='input'>trades</value>
 <value name='totalCount'>7815189</value>
 <value name='totalRate'>132461</value>
 <value name='totalSeconds'>59</value>
 </event>

To use a counter window, add an edge with the counter window as the target and the
window to monitor as the source. You can connect multiple windows to the same counter
window. Streamviewer can subscribe to the counter window to show the results.
Alternatively, you can add the counter window to the trace attribute of the
<contquery> element that prints formatted events to standard output.

Examples

XML Code Examples
<window-counter name='counter' count-interval='2 seconds'
 clear-interval='30 seconds'/>
...
<edges>
 <edge source='source' target='largeTrades counter'/>
 ...
</edges>
...
<event opcode='upsert' window='project/query/counter'>
 <value name='input'>source</value>
 <value name='intervalCount'>205418</value>
 <value name='intervalRate'>102709</value>
 <value name='intervalSeconds'>2</value>
 <value name='totalCount'>205418</value>
 <value name='totalRate'>102709</value>
 <value name='totalSeconds'>2</value>
</event>

180 Chapter 8 • Creating Counter Windows

<event opcode='upsert' window='project/query/counter'>
 <value name='input'>source</value>
 <value name='intervalCount'>293771</value>
 <value name='intervalRate'>146886</value>
 <value name='intervalSeconds'>2</value>
 <value name='totalCount'>499189</value>
 <value name='totalRate'>124797</value>
 <value name='totalSeconds'>4</value>
</event>

<event opcode='upsert' window='project/query/counter'>
 <value name='input'>source</value>
 <value name='intervalCount'>283473</value>
 <value name='intervalRate'>141736</value>
 <value name='intervalSeconds'>2</value>
 <value name='totalCount'>782662</value>
 <value name='totalRate'>130444</value>
 <value name='totalSeconds'>6</value>
</event>

<event opcode='upsert' window='project/query/counter'>
 <value name='input'>source</value>
 <value name='intervalCount'>217338</value>
 <value name='intervalRate'>108669</value>
 <value name='intervalSeconds'>2</value>
 <value name='totalCount'>1000000</value>
 <value name='totalRate'>125000</value>
 <value name='totalSeconds'>8</value>
</event>

C++ Code Examples
dfESPproject *project = engine->newProject("project");
dfESPcontquery *contquery = project->newContquery("contquery");
dfESPwindow_source *source = contquery->newWindow_source("source",
 dfESPindextypes::pi_RBTREE,
 dfESPstring("ID*:int32,symbol:string,valstr:string"));
dfESPschema *schema = source->getSchema();

dfESPwindow_counter *counter = contquery->
 newWindow_counter("counterWindow",dfESPindextypes::pi_RBTREE);
counter->setCountInterval("2 seconds");
counter->setClearInterval("10 seconds");

contquery->addEdge(source,0,counter);

Examples 181

182 Chapter 8 • Creating Counter Windows

Chapter 9

Creating Functional Windows

Overview to Functional Windows . 183

Using Event Loops . 183

Understanding and Using Function Context . 184
Overview to Function Context . 184
Types of Functions You Can Use . 184
Using Expressions . 185
Specifying Properties . 185
Function-Context Example . 188

Functional Window Examples . 189
Stock Trades . 189
C++ Code Example . 190

Overview to Functional Windows
A functional window enables you to use different types of functions to manipulate or
transform event data. You define a schema and then a function context that contains
functions and supporting entities such as regular expressions, XML, and JSON. When an
event enters a functional window, the window looks for a function with a name that
corresponds to each field in its schema. If the function exists, it is run and the resulting
value is entered into the output event. If no function is specified for a field, and a field
with the same name exists in the input schema, the input value is copied directly into the
output event.

You can use the XML element <generate> to specify a function to run in order to
determine whether you want to generate an event from an input event.

You can generate multiple output events from a single input event using the <event-
loop> element. You can specify a function to create some type of data and then grab
any number of entities from that created data. For each of these entities, you can
generate an event using a function context specific to that event loop.

Using Event Loops
Event loops enable you to generate any number of events from a single input event. You
can specify any number of event loops. Each loop deals with a particular type of data.

183

For each input event, a functional window does the following for each event loop entry:

1. Uses a function or reference to generate the data to be used as input to the loop. For
example, in an event-loop-xml loop, you would specify the use-xml element to
generate valid XML. This content can be either a function or a reference to a
property in the window's function-context.

2. Applies an appropriate expression, such as XPATH or JSON, to the data to retrieve 0
or more entities.

3. For each of these entities, sets a data item specified by the data attribute to the string
value of the entity. Then, any functions in the function-context are run and an event
is generated. Any property or event value in the window's function context is
accessible to the loop's function context. Also, the variable specified by the data
attribute is accessible via '$' notation.

Understanding and Using Function Context

Overview to Function Context
The function context enables you to define functions within a functional window. You
can use regular expressions, XML and XPATH, JSON, and other capabilities to
transform data from different types of complex input into usable output.

Types of Functions You Can Use
You can use two types of functions within a function context:

• general functions

• functions specific to event stream processing

You can reference event fields in either the input event or the output event using the '$'
notation: $[name of field]

Here are the data mappings relevant to using functions in a function context:

string ESP_UTF8STR

float ESP_DOUBLE

long ESP_INT64

integer ESP_INT32

Boolean ESP_INT32

For example, suppose that you have a name field in the input event and you wanted to
generate an occupation field in the output event. You could code the function as
follows:

<function name='occupation'>
ifNext

184 Chapter 9 • Creating Functional Windows

(
 equals($name,'larry'),'plumber',
 equals($name,'moe'),'electrician',
 equals($name,'curly'),'carpenter'
)
</function>

You can also reference fields in the output event. Continuing the above example, perhaps
you want to add the hourlyWage field to the output event depending on the value of
occupation:

<function name='hourlyWage'>
ifNext
(
 equals($occupation,'plumber'),85.0,
 equals($occupation','electrician'),110.0,
 equals($occupation,'carpenter'),60.0
)
</function>

Note: It is critical to pay attention to the sequence of fields when you define functions.
If a function references an output event field, then that field must be computed
before the referring field.

Using Expressions
Use the <expressions> element to specify POSIX regular expressions that are
compiled a single time.

<expressions>
 <expression name='expname'>[posix_regular_expression]</expression>
 ...
 </expressions>

After you specify an expression, you can reference it from within a function using the
following notation:

<function name='myData'>rgx(#expname,$inputField,1)</function>

Suppose that you were getting a data field that contained a URI, and you wanted to
extract the protocol from the URI. If you use <function
name='protocol'>rgx('(.*):',$uri,1)</function>, the regular expression
is compiled each time that the function is run. However, if you use the following code:

<expressions>
 <expression name='getProtocol'>(.*):</expression>
</expressions>

<function name='protocol'>rgx(#getProtocol,$uri,1)</function>

The expression is compiled a single time and used each time that the function is run.

Specifying Properties
Properties are similar to expressions in that they are referenced from within functions
using the '#' notation: #[property-type]

Understanding and Using Function Context 185

There are five types of properties:

• map executes the function to generate a map of name-value pairs to be used for value
lookups by name

• set executes the function to generate a set of strings to be used for value lookups

• XML executes the function to generate an XML object that can be used for XPATH
queries.

• JSON executes the function to generate a JSON object that can be used for JSON
lookups

• string executes the function to generate a string for general use in functions

Each property is generated using functions. These functions can reference properties
defined before them in the XML.

Here is how you would code each property type

Property Type Description

<property-map name='name'
outer='outdelim'
inner='indelim'>[code]</
property-map>

• name - the name of the property

• outer - the outer delimiter to use in
parsing the data

• inner - the inner delimiter to use in
parsing the data

• code - the function to run to generate
the data to be parsed into a name-value
map

For example, suppose there exists an input
field data that looks like this:
firstname=joe;lastname=smit
h;occupation=software

You could create the following property-
map: <property-map
name='myMap' outer=';'
inner='='>$data</property-
map>

<property-xml
name='name'>[code]</property-
xml>

• name - the name of the property

• code - the function to run to generate
valid XML

<property-json
name='name'>[code]</property-
json>

• name - the name of the property

• code - the function to run to generate
valid JSON

<property-string
name='name'>[code]</property-
string>

• name - the name of the property

• code - the function to run to generate
a string value

186 Chapter 9 • Creating Functional Windows

Property Type Description

<property-set name='name'
delimiter='delim'>[code]</
property-set>

• name - the name of the property

• delimiter - the delimiter to use in
parsing the data

• code - the function to run to generate
the data to be parsed into a value set

For example, suppose there exists an input
field data that looks like this:
ibm,sas,oracle This would yield
the following property set: <property-
set name='mySet'
delimiter=','>$data</
property-set>

Suppose you had some employee information streaming into the model.

<event>
 <value name='map'>name:[employee name];
 position:[employee position]
 </value>
 <value name='developerInfo'>
 <![CDATA[<info>this is developer info</info>]]>
 </value>
 <value name='managerInfo'>
 <![CDATA[<info>this is manager info</info>]]>
 </value>
</event>

You can create a property-map to store employee data and then examine the position
field in order to create a property-xml containing the appropriate data. If the
employee is a developer, the XML is from developerInfo. Otherwise, it uses
managerInfo. Your function-context would look like this:

<function-context>
 <properties>
 <property-map name='myMap' outer=';' inner=':'>$map</property-map>
 <property-xml name='myXml'>if(equals(mapValue(#myMap,'position'),'developer'),
 $developerInfo,$managerInfo)
 </property-xml>
 </properties>
 <functions>
 <function name='employee'>mapValue(#myMap,'name')</function>
 <function name='info'>xpath(#myXml,'text()')</function>
 </functions>
</function-context>

Streaming in the following event:

<event>
 <value name='map'>
 name:curly;position:developer<
 /value>
 <value name='developerInfo'>
 <![CDATA[<info>this is developer info</info>]]>
 </value>

Understanding and Using Function Context 187

 <value name='managerInfo'>
 <![CDATA[<info>this is manager info</info>]]>
 </value>
</event>

<event>
 <value name='map'>name:moe;position:manager</value>
 <value name='developerInfo'><![CDATA[<info>this is developer info</info>]]></value>
 <value name='managerInfo'><![CDATA[<info>this is manager info</info>]]></value>
</event>

Yields the following result:

<event opcode='insert' window='project/query/transform'>
 <value name='employee'>curly</value>
 <value name='id'>fd26bf36-3d65-4d17-8dc6-317409bbf5b6</value>
 <value name='info'>this is developer info</value>
</event>

<event opcode='insert' window='project/query/transform'>
 <value name='employee'>moe</value>
 <value name='id'>84c56bb7-9f3c-4cb8-93a5-8dc2f75d353b</value>
 <value name='info'>this is manager info</value>
</event>

Function-Context Example
<function-context>
 <expressions>
 <expression name='myexp'>posix_regular_expression</expression>
 ...
 </expressions>
 <properties>
 <property-map name='map' outer=';' inner='='>code</property-map>
 <property-xml name='xmlprop'>code</property-xml>
 <property-json name='jsonprop'>code</property-json>
 <property-string name='string'>code</property-string>
 <property-set name='mySet' delimiter=','>code</property-set>
 ...
 </properties>
 <functions>
 <function name='mySum'>code</function>
 ...
 </functions>
</function-context>

188 Chapter 9 • Creating Functional Windows

Functional Window Examples

Stock Trades
Suppose that you had stock trade information streaming into an event stream processing
model. You want to generate an event anytime that a huge trade (> 150000 shares) takes
place during the first or last 15 minutes of the trading day.

Your model includes the following source window:

<window-source name='source' insert-only='true'>
 <schema>
 <fields>
 <field name='id' type='int32' key='true'/>
 <field name='symbol' type='string'/>
 <field name='currency' type='int32'/>
 <field name='time' type='int64'/>
 <field name='msecs' type='int32'/>
 <field name='price' type='double'/>
 <field name='quant' type='int32'/>
 <field name='venue' type='int32'/>
 <field name='broker' type='int32'/>
 <field name='buyer' type='int32'/>
 <field name='seller' type='int32'/>
 <field name='buysellflg' type='int32'/>
 </fields>
 </schema>
</window-source>

You stream events from the source window into a filter window to obtain huge trades:

<window-filter name='hugeTrades'>
 <expression><![CDATA[quant>150000]]></expression>
</window-filter>

That data flows into the functional window:

<window-functional name='transform'>
 <schema>
 <fields>
 <field name='id' type='int32' key='true'/>
 <field name='symbol' type='string'/>
 <field name='timeString' type='string'/>
 <field name='hourOfDay' type='double'/>
 <field name='quant' type='int32'/>
 </fields>
 </schema>
 <function-context>
 <functions>
 <function name='timeString'>
 timeString($time)
 </function>
 <function name='hourOfDay'>
 precision(quotient(timeSecondOfDay($time),3600),2)
 </function>

Functional Window Examples 189

 </functions>
 </function-context>
</window-functional>

Several fields in are defined in the schema of the functional window. However, functions
are defined only for a few fields. The remaining fields are copied from the input event.

You include functions to do the following things: format a time into a readable form in
the timeString field, and then calculate a floating-point value representing the hour of
the day on which the trade was made.

<function name='hourOfDay'>
 precision(quotient(timeSecondOfDay($time),3600),2)
 </function>

This function produces a floating-point value that you can stream to a filter in order to
get early and late huge trades.

<window-filter name='earlyTrade'>
 <expression><![CDATA[hourOfDay<9.75]]></expression>
</window-filter>

<window-filter name='lateTrade'>
 <expression><![CDATA[hourOfDay>15.75]]></expression>
</window-filter>

Running several million trades through the model generates output like the following:

<event opcode='insert' window='project/query/earlyTrade'>
 <value name='hourOfDay'>9.73</value>
 <value name='id'>11847604</value>
 <value name='quant'>1000000</value>
 <value name='symbol'>NOK</value>
 <value name='timeString'>Wed Aug 4 09:43:48 2010</value>
</event>

<event opcode='insert' window='project/query/lateTrade'>
 <value name='hourOfDay'>15.81</value>
 <value name='id'>16739499</value>
 <value name='quant'>270400</value>
 <value name='symbol'>TXT</value>
 <value name='timeString'>Wed Aug 4 15:48:47 2010</value>
</event>

C++ Code Example
dfESPwindow_functional *transform =
 contquery->newWindow_functional("transform",dfESPindextypes::pi_EMPTY,
 "id*:int64,symbol:string,timeString:string,
 hourOfDay:double,quant:int64");
transform->setInsertOnly();
transform->getContext()->setFunction("timeString","timeString($time)");
transform->getContext()->setFunction("hourOfDay",
 "precision(quotient(timeSecondOfDay($time),3600),2)");
contquery->addEdge(hugeTrades,0,transform);

190 Chapter 9 • Creating Functional Windows

Chapter 10

Creating Join Windows

Overview to Join Windows . 191

Understanding Streaming Joins . 192
Overview to Streaming Joins . 192
Using Secondary Indices . 194
Using Regeneration versus No Regeneration . 195

Creating Empty Index Joins . 195

Examples of Join Windows . 196

Overview to Join Windows
A join window takes two input windows and a join type. For example,

• left outer window

• right outer window

• inner join

• full outer join

A join window takes a set of join constraints and a non-key field signature string. It also
takes one of the following for the calculation of the join non-key fields when new input
events arrive:

• a join selection string that is a one-to-one mapping of input fields to join fields

• field calculation expressions

• field calculation functions

A join window produces a single output stream of joined events. Because an engine is
based on primary keys and supports Inserts, Updates, and Deletes, there are some
restrictions placed on the types of joins that can be used.

The left window is the first window added as a connecting edge to the join window. The
second window added as a connecting edge is the right window.

191

Understanding Streaming Joins

Overview to Streaming Joins
Given a left window, a right window, and a set of join constraints, a streaming join can
be classified into one of three different types.

Join Type Description

one-to-one joins An event on either side of the join can match at most one event from the
other side of the join. This type of join always involves two dimension
tables.

one-to-many joins
(or many-to-one
joins)

An event that arrives on one side of the join can match many rows of the
join. An event that arrives on the other side of the join can match at most
one row of the join.

There are two conditions for a join to be classified as a one-to-many (or
many-to-one) join:

• a change to one side of the join can affect many rows

• a change to the other side can affect at most one row

Both conditions must be met.

many-to-many
joins

A single event that arrives on either side of the join can match more than
one event on the other side of the join.

Note: The following definition is essential to understanding streaming joins: an X-to-Y
join is a join where the following holds:

• a single event from the left window can effect at most X events in the join
window

• a single event in the right window can effect at most Y events in the join window.

The join constraints are an n-tuple of equality expressions. Each expression involves one
field from the left window and one field from the right. For example: (left.f1 = =
right.f10), (left.f2 = = right.f7), ... (left.field10 == right.field1) .

In a streaming context, every window has a primary key that enables the insertion,
deletion, and updating of events. The keys for a join window are derived from the total
set of keys from the left window and the right window. When an event arrives on either
side, you must be able to compute how the join changes, given the nature of the arriving
data (Insert, Update, or Delete). The theory of join-key derivation that SAS Event
Stream Processing follows maintains consistency for the most common join cases.

Some of the basic axioms used in the join-key derivation are as follows:

• For a left-outer join, the keys of the join cannot contain any keys from the right
window. A joined event is output when a left event arrives. There is no matching
event on the right.

• For a right-outer join, the keys of the join cannot contain any keys from the left
window. A joined event is output when a right event arrives. There is no matching
event on the left.

192 Chapter 10 • Creating Join Windows

• For a many-to-many join, the keys of the joins need to be the union of the keys for
the left and right windows. To understand this axiom, think of an event coming in on
one side of the join that matches multiple events on the other side of the join. In this
case, all the keys of the many side must be included. Otherwise, you cannot
distinguish the produced events. Because the single event that matches many events
can come on the other side of the join, reverse the above statement to determine what
happens in a streaming context. All keys from the left and right side of the join must
be present.

• For one-to-many or many-to-one joins, the side of the join that matches multiple
events is the side from which that the join windows keys derive. This is the case
when there is a single event on the other side.

Join windows are either dimension windows or fact windows. Dimension windows are
those whose entire set of key fields participate in the join constraints. Fact windows are
those that have at least one key field that does not participate in the join constraints.

The following table summarizes the allowed join sub-types and key derivation based on
the axioms and the specified join-constraints.

Classification
Left
Window

Right
Window

Allowed
Type

Key
Derivation

Streaming
Window

one-to-one Dimension Dimension Left Outer join keys are
keys of left
window

Left

Right Outer join keys are
keys of right
window

Right

Full Outer join keys are
keys of left
window
(arbitrary
choice)

Left

Inner join keys are
keys of left
window
(arbitrary
choice)

Left

one-to-many Fact Dimension Left Outer join keys are
keys of left
window (right
window is
lookup)

Left

Inner join keys are
keys of left
window (right
window is
lookup)

Left

Understanding Streaming Joins 193

Classification
Left
Window

Right
Window

Allowed
Type

Key
Derivation

Streaming
Window

many-to-one Dimension Fact Right Outer join keys are
keys of right
window (left
window is
lookup)

Right

Inner join keys are
keys of right
window (left
window is
lookup)

Right

many-to-many Fact Fact Inner join keys are
the full set of
keys from the
left and right
windows

None

Note: When all the keys of a window are used in a join constraint, adding additional
non-key fields on the side of the constraint is not honored. For example, suppose that
the set of left-hand fields that participate in a join constraint contain all of the keys of
the left window. Any non-key fields in that set are ignored.

Using Secondary Indices
For allowed one-to-many and many-to-one joins, a change to the fact table enables
immediate lookup of the matching record in the dimension table through its primary
index. All key values of the dimension table are mapped in the join constraints.
However, a change to the dimension table does not include a single primary key for a
matching record in the fact table. This illustrates the many-to-one nature of the join. By
default, matching records in the fact table are sought through a table scan.

For very limited changes to the dimension table there is no additional secondary index
maintenance, so the join processing can be optimized. Here, the dimension table is a
static lookup table that can be pre-loaded. All subsequent changes happen on the fact
table.

When a large number of changes are possible to the dimension table, it is suggested to
enable a secondary index on the join. Automatic secondary index generation is enabled
by specifying a join parameter when you construct a new join window. This causes a
secondary index to be generated and maintained automatically when the join type
involves a dimension table. This has the advantage of eliminating all table scans when
changes are made to the dimension table. There is a slight performance penalty when
you run with secondary indices turned on. The index needs to be maintained with every
update to the fact table. However, this secondary index maintenance is insignificant
compared with elimination of table scans. With large tables, you can achieve time
savings of two to three orders of magnitude through the use of secondary indices.

For many-to-many joins, enabling on secondary indices is recommended.

194 Chapter 10 • Creating Join Windows

Using Regeneration versus No Regeneration
The default join behavior is to always regenerate the appropriate rows of a join window
when a change is made to either side of the joins. The classic example of this is a left
outer join: the right window is the lookup window, and the left table is the fact
(streaming) window. The lookup side of the join is usually pre-populated, and as events
stream though the left window, they are matched and the joined events output. Typically,
this is a one-to-one relation for the streaming side of the join: one event in, one
combined event out. Sometimes a change is made on the dimension side. This change
can be in the form of an update to an event, a deletion of an event, or an insertion of a
new event. The default behavior is to issue a change set of events that keeps the join
consistent.

In regeneration mode, the behavior of a left outer join on a change to the right window
(lookup side) is as follows:

• Insert: find all existing fact events that match the new event. If any are found, issue
an update for each of these events. They would have used nulls for fields of the
lookup side when they were previously processed

• Delete: find fact events that match the event to be deleted. If any are found, issue an
update for each of these events. They would have used matching field values for the
lookup event, and now they need to use nulls as the lookup event is removed.

• Update: Behaves like a delete of the old event followed by an insert of the new
event. Any of the non-key fields of the lookup side that map to keys of the streaming
side are taken into account. It is determined whether any of these fields changed
value.

With no-regeneration mode, when there is a left outer join on a change to the right
window (lookup side), changes to the dimension (lookup) table affect only new fact
events. All previous fact events that have been processed by the join are not regenerated.
This frequently occurs when a new dimension window is periodically flushed and re-
loaded.

The join window has a no-regenerates flag that is false by default. This gives the
join full-relational join semantics. Setting this flag to true for your join window enables
the no-regenerates semantics. Setting the flag to true is permitted for any of the left
or right outer joins, along with one-to-many, many-to-one, and one-to-one inner joins.
When a join window is running in no-regenerates mode, it optimizes memory usage
by omitting the reference-counted copy of the fact window's index that is normally
maintained in the join window.

Creating Empty Index Joins
Suppose there is a lookup table and an insert-only fact stream. You want to match the
fact stream against the lookup table (generating an Insert) and pass the stream out of the
join for further processing. In this case, the join does not need to store any fact data.
Because no fact data is stored, any changes to the dimension data affect only subsequent
rows. The changes cannot go back through existing fact data (because the join is
stateless) and issue updates. You must enable the no-regenerates property to ensure
that the join does not try to go back through existing data.

Suppose there is a join of type LEFT_OUTER or RIGHT_OUTER. The index type is set
to pi_EMPTY, rendering a stateless join window. The no-regenerates flag is set to

Creating Empty Index Joins 195

TRUE. This is as lightweight a join as possible. The only retained data in the join is a
local reference-counted copy of the dimensions table data. This copy is used to perform
lookups as the fact data flows into, and then out of, the join.

On a join window, you cannot specify insert-only for left and right inputs independently.
Specifying insert-only for both sides of the join by setting the join window to "insert
only" is too restrictive. This would not permit changes to the lookup, or non-streaming
side of the join. You must follow these rules to ensure expected results.

• A many-to-many join cannot have an empty index.

• The streaming side of a join, as specified in the join classification table, can receive
only inserts.

Examples of Join Windows
The following example shows a left outer join. The left window processes fact events
and the right window processes dimension events.

left input schema: "ID*:int32,symbol:string,price:double,quantity:int32,
 traderID:int32"

right input schema: "tID*:int32,name:string"

If sw_01 is the window identifier for the left input window and sw_02 is the window
identifier for the right input window, your code would look like this:

dfESPwindow_join *jw;
jw = cq->newWindow_join("myJoinWindow", dfESPwindow_join::jt_LEFTOUTER,
 dfESPindextypes::pi_RBTREE);
jw-> setJoinConditions ("l_ID==r_tID");
jw->setJoinSelections("l_symbol,l_price,l_traderID,r_name");
jw->setFieldSignatures("sym:string,price:double,tID:int32,
 traderName:string");

Note the following:

• Join constraints take the following form. They specify what fields from the left and
right events are used to generate matches.

"l_fieldname=r_fieldname, ...,l_fieldname=r_fieldname"

• Join selection takes the following form. It specifies the list of non-key fields that are
included in the events generated by the join window.

"{l|r}_fieldname, ...{l|r}_fieldname"

• Field signatures take the following form. They specify the names and types of the
non-key fields of the output events. The types can be inferred from the fields
specified in the join selection. However, when using expressions or user-written
functions (in C++), the type specification cannot be inferred, so it is required:

"fieldname:fieldtype, ..., fieldname:fieldtype

When you use non-key field calculation expressions, your code looks like this:

dfESPwindow_join *jw;
jw = cq->newWindow_join("myJoinWindow", dfESPwindow_join::jt_LEFTOUTER,
 dfESPindextypes::pi_RBTREE);
jw->setJoinConditions("l_ID==r_tID");

196 Chapter 10 • Creating Join Windows

jw->addNonKeyFieldCalc("l_symbol");
jw->addNonKeyFieldCalc("l_price");
jw->addNonKeyFieldCalc("l_traderID");
jw->addNonKeyFieldCalc("r_name");
jw->setFieldSignatures("sym:string,price:double,tID:int32,
 traderName:string");

This shows one-to-one mapping of input fields to join non-key fields. You can use
calculation expressions and functions to generate the non-key join fields using arbitrarily
complex combinations of the input fields.

Examples of Join Windows 197

198 Chapter 10 • Creating Join Windows

Chapter 11

Creating Notification Windows

Overview to Notification Windows . 199

Notification Window Delivery Channels . 201
Overview to Notification Window Delivery Channels . 201
Using the Email Delivery Channel . 201
Using the SMS Delivery Channel . 202
Using the MMS Delivery Channel . 203

Using the Function-Context Element . 204

Examples of Notification Windows . 207
Building a Streaming Performance Monitor . 207
Catching Front Running Traders . 208
Example Written in C++ . 214

Overview to Notification Windows
Notification windows enable you to send notifications through email (SMTP), text
(SMS), and or multimedia message (MMS). These windows, like functional windows,
enable you to define a function context to transform incoming events before processing
them for possible notifications. Each of the different types of notification has its own
configuration requirements. For example, an email requires that the configuration
specify the event field that contains the 'send to' email address. SMS and MMS require
phone numbers and phone provider gateway information.

You can format notifications as you want and include the event values within the
message. To include event values, include the name of the field, preceded by a $
character, in your message formatting:

$broker sold $quant1 shares of $symbol
$tstap1 for self for $$price1, then sold $quant2 shares for customer at $tstamp2.

Notification windows enable you to create any number of delivery channels to send
notifications. You can specify functions to determine whether to send the notification.
Given the potentially massive amounts of streaming data that could cause an avalanche
of notifications, you can specify a throttle interval for each channel. If you set the
interval to '1 hour', you send at most one notification from that channel to any recipient
every hour.

199

Notification windows never generate events. Nevertheless, you can use the schema
element to specify values for the function-context to generate. You can use these values
to format notification messages.

The full XML configuration of a notification window is as follows:

<window-notification name=''>
 <schema>
 ...
 </schema>

 <function-context>...</function-context>

 <smtp host='host'
 user='user'
 password='password'
 port='port' (opt, default='25') />

 <delivery-channels>

 <email throttle-interval='' test='true | false'>
 <deliver>[code]</deliver>
 <email-info>
 <sender>[code]</sender>
 <recipients>[code]</recipients>
 <subject>[code]</subject>
 <from>[code]</from>
 <to>[code]</to>
 </email-info>
 <email-contents>
 <text-content name=''>...</text-content>
 <html-content name=''>...</html-content>
 <image-content name=''>...</image-content>
 ...
 </email-contents>
 </email>

 <sms throttle-interval='' test='true | false'>
 <deliver>[code]</deliver>
 <sms-info>
 <sender>[code]</sender>
 <subject>[code]</subject>
 <from>[code]</from>
 <gateway>[code]</gateway>
 <phone>[code]</phone>
 </sms-info>
 <sms-contents>
 <text-content name=''>...</text-content>
 </sms-contents>
 </sms>

 <mms throttle-interval='' test='true | false'>
 <deliver>[code]</deliver>
 <mms-info>
 <sender>[code]</sender>
 <subject>[code]</subject>
 <gateway>[code]</gateway>

200 Chapter 11 • Creating Notification Windows

 <phone>[code]</phone>
 </mms-info>
 <mms-contents>
 <text-content name=''>...</text-content>
 <image-content name=''>...</image-content>
 ...
 </mms-contents>
 </mms>

 </delivery-channels>

</window-notification>

Notification windows use Simple Mail Transfer Protocol (SMTP) to send email, Short
Message Service (SMS), and Multimedia Messaging Service (MMS) messages. To use
these delivery channels, you must specify an smtp element to provide information about
an SMTP server:

<smtp host='host' user='user' password='password' port='port' (opt, default='25') />

Only the host attribute of the element is required, because many SMTP servers run on
the default port and do not require authentication:

<smtp host='mailhost.fyi.sas.com' />

However, it is a good practice to supply values for all the attributes of the smtp element:

<smtp host='smtp-server.ec.rr.com'
 user='esptest@ec.rr.com'
 password='esptest1' port='587' />

Notification Window Delivery Channels

Overview to Notification Window Delivery Channels
The notification window uses three types of delivery channel:

• email sends a multipart email message that contains text, HTML, and images to a
specified email address

• sms sends an SMS text message that contains text to an email address in the format
phoneNumber@gateway

• mms sends a Multimedia Messaging Service (MMS) message that contains text and
images to an email address in the format phoneNumber@gateway

Using the Email Delivery Channel
Here is XML code to use the email delivery channel:

<email throttle-interval='' test='true | false'>
 <deliver>[code]</deliver>
 <email-info>
 <sender>[code]</sender>
 <recipients>[code]</recipients>
 <subject>[code]</subject>

Notification Window Delivery Channels 201

 <from>[code]</from>
 <to>[code]</to>
 </email-info>
 <email-contents>
 <text-content name=''>...</text-content>
 <html-content name=''>...</html-content>
 <image-content name=''>...</image-content>
 ...
 </email-contents>
</email>

The email element contains the following attributes:

• throttle-interval specifies a time period in which at most one notification is
sent to a recipient

• test is a Boolean attribute that specifies whether to run in test mode. When running
in test mode, the notification is not sent but written to the console. This can be useful
when drafting notification messages.

The deliver element is optional. It contains a function to run in order to determine
whether the notification should be sent.

The email-info element contains functions or hardcoded values that represent the
data to be used to send an email notification. It contains the following elements:

• the sender email address

• the recipients to whom the email message is sent

• the subject of the email

• the from text of the email message

• the to text of the email

• The email-contents element, which contains the following elements:

• the text-content element encloses the plain text content of the message

• the html-content element encloses the HTML content of the message

• the image-content element encloses a URL to image data

These elements can be interspersed in any way you want. The content of each element is
included in the message in the order in which it appears. Any image data is retrieved and
base64 encoded before being inserted into the message.

Using the SMS Delivery Channel
Here is XML code to use the sms delivery channel:

<sms throttle-interval='' test='true | false'>
 <deliver>[code]</deliver>
 <sms-info>
 <sender>[code]</sender>
 <subject>[code]</subject>
 <from>[code]</from>
 <gateway>[code]</gateway>
 <phone>[code]</phone>
 </sms-info>
 <sms-contents>
 <text-content name=''>...</text-content>

202 Chapter 11 • Creating Notification Windows

 </sms-contents>
</sms>

The sms element contains the following attributes:

• throttle-interval specifies a time period in which at most one notification is
sent a recipient.

• test is a Boolean attribute that specifies whether to run in test mode. When running
in test mode, the notification is not sent but written to the console. This can be useful
when drafting notification messages.

The deliver element is optional. It contains a function to run in order to determine
whether the notification should be sent.

The sms-info element contains functions or hardcoded values that represent the data
to be used to send an email notification. It contains the following elements:

• the sender email address.

• the subject of the email.

• the from text of the email message.

• the gateway element specifies the recipient’s provider’s SMS gateway. For
example, AT&T is txt.att.net. Sprint is messaging.sprintpcs.com.

• the sms-contents element contains the body of the message to be sent. It contains
the following element:

• the text-content element encloses the plain text content of the message.

Using the MMS Delivery Channel
Here is XML code to use the MMS delivery channel:

<mms throttle-interval='' test='true | false'>
 <deliver>[code]</deliver>
 <mms-info>
 <sender>[code]</sender>
 <subject>[code]</subject>
 <gateway>[code]</gateway>
 <phone>[code]</phone>
 </mms-info>
 <mms-contents>
 <text-content name=''>...</text-content>
 <image-content name=''>...</image-content>
 ...
 </mms-contents>
</mms>

The mms element contains the following attributes:

• throttle-interval specifies a time period in which at most one notification is
sent to a recipient.

• test is a Boolean attribute that specifies whether to run in test mode. When running
in test mode, the notification is not sent but written to the console. This can be useful
when drafting notification messages.

The deliver element is optional. It contains a function to run in order to determine
whether the notification should be sent.

Notification Window Delivery Channels 203

The mms-info element contains functions or hardcoded values that represent the data
to be used to send an email notification. It contains the following elements:

• the sender email address.

• the subject of the email.

• the gateway element specifies the recipient’s provider’s SMS gateway. For
example, AT&T is txt.att.net. Sprint is messaging.sprintpcs.com.

• the recipient phone number.

• the mms-contents element contains the body of the message to be sent. It contains
the following elements:

• the text-content element encloses the plain text content of the message.

• the image-content element encloses a URL to image data.

These elements can be interspersed in any way you want. The content of each element is
included in the message in the order it appears. Any image data is retrieved and base64
encoded before being inserted into the message.

Using the Function-Context Element
The function-context element enables you to define functions to manipulate event
data. You can use regular expressions, XML and XPath, or JSON to transform data from
complex input information into more usable data.

Here is XML code that uses the function-context element:

<function-context>
 <expressions>
 <expression name=''>[Regular Expression]</expression>
 ...
 </expressions>
 <properties>
 <property-map name='' outer='' inner=''>[code]</property-map>
 <property-xml name=''>[code]</property-xml>
 <property-json name=''>[code]</property-json>
 <property-string name=''>[code]</property-string>
 <property-list name='' delimiter=''>[code]</property-list>
 <property-set name='' delimiter=''>[code]</property-set>
 ...
 </properties>
 <functions>
 <function name=''>[code]</function>
 ...
 </functions>
</function-context>

You can use two types of functions in the function-context element:

• general functions (for example, abs, ifNext, and so on)

• functions that are specific to event stream processing (for example, eventNumber)

You can reference event fields in either the input event or the output event using the $
notation (for example, $[name_of_field]).

204 Chapter 11 • Creating Notification Windows

Suppose that you have a name field in the input event and you want to generate an
occupation field in the output event based on the value of name. In this case, you could
use the following function:

<function name='occupation'>
ifNext
(
 equals($name,'larry'),'plumber',
 equals($name,'moe'),'electrician',
 equals($name,'curly'),'carpenter'
)
</function>

Now suppose that you want to add an hourlyWage to the output event that depends on
occupation:

<function name='hourlyWage'>
ifNext
(
 equals($occupation,'plumber'),85.0,
 equals($occupation','electrician'),110.0,
 equals($occupation,'carpenter'),60.0
)
</function>

Note: Sequence is important when you define functions in the function-context element.
When a function references an output event field, that field needs to be computed
before the referring field.

Use POSIX regular expressions in your code. Several functions are available to deal
with regular expressions. Because regular expressions must be compiled before they can
be used, use the expressions element to specify that expressions are compiled a
single time when the function context is created. Then, the expression can be referenced
from within functions using the following notation:

#[name_of_expression]
<function name='myData'>rgx(#myExpression,$inputField,1)
</function>

For example, suppose you receive a data field that contains a URI and you want to
extract the protocol from it. When you use the following function, the regular expression
is compiled each time that the function runs:

<function name='protocol'>rgx('(.*):',$uri,1)
</function>

If you use the following code, the expression is compiled a single time and used each
time that the function runs:

<expressions>
 <expression name='getProtocol'>(.*):
 </expression>
</expressions>

<function name='protocol'>rgx(#getProtocol,$uri,1)
</function>

Reference properties from within functions using the # notation:
#[name_of_property].

Using the Function-Context Element 205

The properties element is a container for the following elements:

Element Description

property-map executes the function to generate a map of name-value pairs to be
used for value lookups by name

property-list executes the function to generate a list of strings to be used for
indexed access

property-set executes the function to generate a set of strings to be used for
value lookups

property-xml executes the function to generate an XML object that can be used
for XPath queries

property-json executes the function to generate a JSON object that can be used
for JSON lookups

property-string executes the function to generate a string for general use in
functions

Each property is generated using functions. These functions can reference properties
defined before them in the XML.

Suppose you had employee information streaming into the model.

<event>
 <value name='map'>name:[employee name];position:[employee position]</value>
 <value name='developerInfo'><![CDATA[<info>this is developer info</info>]]></value>
 <value name='managerInfo'><![CDATA[<info>this is manager info</info>]]></value>
</event>

You can use the property-map element to store employee data and examine the
position field of the event in order to create a property-xml that contains the
appropriate data. When the employee is a developer, the XML is created from
developerInfo. Otherwise, it uses managerInfo.

Specify the function-context element as follows:

<function-context>
 <properties>
 <property-map name='myMap' outer=';' inner=':'>$map</property-map>
 <property-xml name='myXml'>
 if(equals(mapValue(#myMap,'position'),'developer'),
 $developerInfo,$managerInfo)</property-xml>
 </properties>
 <functions>
 <function name='employee'>mapValue(#myMap,'name')</function>
 <function name='info'>xpath(#myXml,'text()')</function>
 </functions>
</function-context>

When you stream the following events:

<event>
 <value name='map'>name:curly;position:developer</value>
 <value name='developerInfo'><![CDATA[<info>this is developer info</info>]]></value>

206 Chapter 11 • Creating Notification Windows

 <value name='managerInfo'><![CDATA[<info>this is manager info</info>]]></value>
</event>

<event>
 <value name='map'>name:moe;position:manager</value>
 <value name='developerInfo'><![CDATA[<info>this is developer info</info>]]></value>
 <value name='managerInfo'><![CDATA[<info>this is manager info</info>]]></value>
</event>

The function-context yields the following:

<event opcode='insert' window='project/query/transform'>
 <value name='employee'>curly</value>
 <value name='id'>fd26bf36-3d65-4d17-8dc6-317409bbf5b6</value>
 <value name='info'>this is developer info</value>
</event>

<event opcode='insert' window='project/query/transform'>
 <value name='employee'>moe</value>
 <value name='id'>84c56bb7-9f3c-4cb8-93a5-8dc2f75d353b</value>
 <value name='info'>this is manager info</value>
</event>

For more information about how to define each property, see “XML Language Elements
Relevant to Notification Windows”.

Examples of Notification Windows

Building a Streaming Performance Monitor
Suppose that you want to stream a counter window into a filter window in order to check
whether total throughput rate has dropped below 130,000 events per second. When that
condition occurs, the event streams into a notification window that sends an SMS text
message alerting someone of the slow streaming condition.

Here is the counter window:

<window-counter name='counter'
 count-interval='2 seconds'
 clear-interval='30 seconds'/>

It feeds the following filter window:

<window-filter name='poorPerformance'>
 <expression><![CDATA[totalSeconds > 10 and totalRate<130000]]></expression>
</window-filter>

Note that the totalSeconds > 10. You anticipate clocking slower rates as the data
begins to stream.

Next, feed the event that indicates poor performance into a notification window:

<window-notification name='reportPerformance'>
 <smtp host='mailhost.fyi.sas.com' />
 <delivery-channels>
 <sms test='false' throttle-interval='2 hours'>
 <sms-info>
 <sender>brenda.doe@orion.com</sender>

Examples of Notification Windows 207

 <from>ESP_Trade_Monitor</from>
 <subject>Slow Streaming</subject>
 <gateway>txt.att.net</gateway>
 <phone>5556466705</phone>
 </sms-info>
 <sms-contents>
 <text-content>
 The trade streaming has become very slow.
 It is only processing $totalRate trades per second after running
 for $totalSeconds seconds.
 </text-content>
 </sms-contents>
 </sms>
 </delivery-channels>
</window-notification>

You do not need extra schema or function context in this example. All the information
you want to send is in the input event. The event generated by a counter window that
looks like this:

<event opcode='upsert' window='project/query/counter'>
 <value name='input'>source</value>
 <value name='intervalCount'>283473</value>
 <value name='intervalRate'>141736</value>
 <value name='intervalSeconds'>2</value>
 <value name='totalCount'>782662</value>
 <value name='totalRate'>130444</value>
 <value name='totalSeconds'>6</value>
</event>

Grab the totalRate field and send it in an SMS text message along with the number
of seconds that events have been streaming. The recipient gets an SMS text message
with this data.

Catching Front Running Traders
The following example catches stock traders when they attempt front running buys. A
broker caught in the act is sent an email, an SMS text message, and an MMS message.
The message includes graphic details of the trades involved in the violation, and for the
channels that permit graphics, contains an image of someone in a jail cell. All relevant
message routing information is included in the broker dimension data:

i,n,1012112,Frodo,ESP,940 Orion Suite 201 Cary NC 27513,,frodo.doe@orion.com,5556466705,txt.att.net,mms.att.net

i,n,1012223,Sam,ESP,940 Orion Suite 201 Cary NC 27513,,sam.doe@orion.com,5556466706,txt.att.net,mms.att.net

i,n,1012445,Pippin,ESP,940 Orion Suite 201 Cary NC 27513,pippin.doe@orion.com,5556466707,txt.att.net,mms.att.net

i,n,1012334,Merry,ESP,940 Orion Suite 201 Cary NC 27513,merry.doe@orion.com,5556466708,txt.att.net,mms.att.net

i,n,101667,Gandalf,ESP,940 Orion Suite 201 Cary NC 27513,gandalf.doe@orion.com,5556466709,txt.att.net,mms.att.net

i,n,1012001,Aragorn,ESP,940 Orion Suite 201 Cary NC 27513,aragorn.doe@orion.com,5556466710,txt.att.net,mms.att.net

Note that the last four fields contain the email, phone number, and SMS and MMS
gateways for each broker.

First, data streams into the model through a source window.

<window-source name='brokersSource' insert-only='true'>
 <schema-string>broker*:int32,brokerName:string,brokerage:string,
 brokerAddress:string,brokerPhone:string,email:string,
 smsGateway:string,mmsGateway:string</schema-string>
 <connectors>

208 Chapter 11 • Creating Notification Windows

 <connector class='fs'>
 <properties>
 <property name='type'>pub</property>
 <property name='fstype'>csv</property>
 <property name='fsname'>data/brokers.csv</property>
 </properties>
 </connector>
 </connectors>
</window-source>

A pattern window is constructed to detect front running violations. The pattern window
needs to carry a lot of information because it deals with up to three trades. Each trade
contains broker and customer information as well as the trade data. All of this data must
be available to format a notification message.

The pattern window looks like this:

<window-pattern name='frontRunning'>
 <schema>
 <fields>
 <field name='id' type='int64' key='true' />
 <field name='broker' type='int32' />
 <field name='brokerName' type='string' />
 <field name='email' type='string' />
 <field name='phone' type='string' />
 <field name='sms' type='string' />
 <field name='mms' type='string' />
 <field name='customer' type='int32' />
 <field name='symbol' type='string' />
 <field name='tstamp1' type='string' />
 <field name='tstamp2' type='string' />
 <field name='tstamp3' type='string' />
 <field name='tradeId1' type='int32' />
 <field name='tradeId2' type='int32' />
 <field name='tradeId3' type='int32' />
 <field name='price1' type='double' />
 <field name='price2' type='double' />
 <field name='price3' type='double' />
 <field name='quant1' type='int32' />
 <field name='quant2' type='int32' />
 <field name='quant3' type='int32' />
 <field name='slot' type='int32' />
 </fields>
 </schema>
 <splitter-expr>
 <expression>slot</expression>
 </splitter-expr>
 <patterns>
 <pattern index='broker,symbol'>
 <events>
 <event name='e1'>((buysellflg == 1)
 and (broker == buyer)
 and (s == symbol)
 and (b == broker)
 and (p == price))</event>
 <event name='e2'>((buysellflg == 1)
 and (broker != buyer)

Examples of Notification Windows 209

 and (s == symbol)
 and (b == broker))</event>
 <event name='e3'><![CDATA[((buysellflg == 0)
 and (broker == seller)
 and (s == symbol)
 and (b == broker)
 and (p < price))]]></event>
 </events>
 <logic>fby{1 hour}(fby{1 hour}(e1,e2),e3)</logic>
 <output>
 <field-selection name='broker' node='e1'/>
 <field-selection name='brokerName' node='e1'/>
 <field-selection name='brokerEmail' node='e1'/>
 <field-selection name='brokerPhone' node='e1'/>
 <field-selection name='brokerSms' node='e1'/>
 <field-selection name='brokerMms' node='e1'/>
 <field-selection name='buyer' node='e2'/>
 <field-selection name='symbol' node='e1'/>
 <field-selection name='date' node='e1'/>
 <field-selection name='date' node='e2'/>
 <field-selection name='date' node='e3'/>
 <field-selection name='id' node='e1'/>
 <field-selection name='id' node='e2'/>
 <field-selection name='id' node='e3'/>
 <field-selection name='price' node='e1'/>
 <field-selection name='price' node='e2'/>
 <field-selection name='price' node='e3'/>
 <field-selection name='quant' node='e1'/>
 <field-selection name='quant' node='e2'/>
 <field-selection name='quant' node='e3'/>
 <field-expr>1</field-expr>
 </output>
 </pattern>
 <pattern index='broker,symbol'>
 <events>
 <event name='e1'>((buysellflg == 0)
 and (broker == seller)
 and (s == symbol)
 and (b == broker))</event>
 <event name='e2'>((buysellflg == 0)
 and (broker != seller)
 and (s == symbol)
 and (b == broker))</event>
 </events>
 <logic>fby{10 minutes}(e1,e2)</logic>
 <output>
 <field-selection name='broker' node='e1'/>
 <field-selection name='brokerName' node='e1'/>
 <field-selection name='brokerEmail' node='e1'/>
 <field-selection name='brokerPhone' node='e1'/>
 <field-selection name='brokerSms' node='e1'/>
 <field-selection name='brokerMms' node='e1'/>
 <field-selection name='seller' node='e2'/>
 <field-selection name='symbol' node='e1'/>
 <field-selection name='date' node='e1'/>
 <field-selection name='date' node='e2'/>

210 Chapter 11 • Creating Notification Windows

 <field-expr> </field-expr>
 <field-selection name='id' node='e1'/>
 <field-selection name='id' node='e2'/>
 <field-expr>0</field-expr>
 <field-selection name='price' node='e1'/>
 <field-selection name='price' node='e2'/>
 <field-expr>0</field-expr>
 <field-selection name='quant' node='e1'/>
 <field-selection name='quant' node='e2'/>
 <field-expr>0</field-expr>
 <field-expr>2</field-expr>
 </output>
 </pattern>
 </patterns>
</window-pattern>

An event streams into the notification window.

<window-notification name='traderBusted'>
 <smtp host='smtp-server.ec.rr.com'
 user='esptest@ec.rr.com'
 password='esptest1' port='587' />
 <schema>
 <fields>
 <field name='id' type='int64' key='true' />
 <field name='broker' type='int32' />
 <field name='brokerName' type='string' />
 <field name='email' type='string' />
 <field name='phone' type='string' />
 <field name='sms' type='string' />
 <field name='mms' type='string' />
 <field name='customer' type='int32' />
 <field name='symbol' type='string' />
 <field name='tstamp1' type='string' />
 <field name='tstamp2' type='string' />
 <field name='tstamp3' type='string' />
 <field name='tradeId1' type='int32' />
 <field name='tradeId2' type='int32' />
 <field name='tradeId3' type='int32' />
 <field name='price1' type='double' />
 <field name='price2' type='double' />
 <field name='price3' type='double' />
 <field name='quant1' type='int32' />
 <field name='quant2' type='int32' />
 <field name='quant3' type='int32' />
 <field name='slot' type='int32' />
 <field name='day' type='string' />
 <field name='price1' type='double' />
 <field name='price2' type='double' />
 <field name='price3' type='double' />
 <field name='time1' type='string' />
 <field name='time2' type='string' />
 <field name='time3' type='string' />
 <field name='profit' type='double' />
 </fields>
 </schema>
 <function-context>

Examples of Notification Windows 211

 <properties>
 <property-list name='time1' delimiter=' '>$tstamp1</property-list>
 <property-list name='time2' delimiter=' '>$tstamp2</property-list>
 <property-list name='time3' delimiter=' '>$tstamp3</property-list>
 </properties>
 <functions>
 <function name='profit'>product($quant3,diff($price3,$price1))</function>
 <function name='day'>listItem(#time1,0)</function>
 <function name='time1'>listItem(#time1,1)</function>
 <function name='time2'>listItem(#time2,1)</function>
 <function name='time3'>listItem(#time3,1)</function>
 <function name='price1'>precision($price1,2)</function>
 <function name='price2'>precision($price2,2)</function>
 <function name='price3'>precision($price3,2)</function>
 </functions>
 </function-context>
 <delivery-channels>
 <email test='true' throttle-interval='1 day'>
 <deliver>contains(toLower($brokerName),'@BROKER@')</deliver>
 <email-info>
 <sender>esptest@ec.rr.com</sender>
 <recipients>$email</recipients>
 <from>ESP Broker Surveillance</from>
 <to>$brokerName</to>
 <subject>You have been caught cheating, $brokerName</subject>
 </email-info>
 <email-contents>
 <html-content><![CDATA[
 <body>You bought $quant1 shares of $symbol
 for $$price1 on $day at $time1.
 You then bought $symbol for customer $customer
 at $time2, after which you sold $quant3 shares of
 $symbol at $time3 for $$price3,
 thus making you a profit of $$profit.

</body>
]]></html-content>
 <image-content type='image'>
 http://esp-base:18080/esp/stuff/jail.jpg
 </image-content>
 </email-contents>
 </email>
 <mms test='true' throttle-interval='1 day'>
 <deliver>contains(toLower($brokerName),'@BROKER@')</deliver>
 <mms-info>
 <sender>esptest@ec.rr.com</sender>
 <subject>You have been caught cheating, $brokerName</subject>
 <gateway>$mms</gateway>
 <phone>$phone</phone>
 </mms-info>
 <mms-contents>
 <text-content>You bought $quant1 shares of $symbol
 for $$price1 on $day at $time1. You then bought $symbol for customer
 $customer at $time2, after which you sold $quant3 shares of $symbol
 at $time3 for $$price3, thus making you a profit of $$profit.
 </text-content>
 <image-content type='image'>
 http://esp-base:18080/esp/stuff/x.jpg

212 Chapter 11 • Creating Notification Windows

 </image-content>
 </mms-contents>
 </mms>
 <sms test='true' throttle-interval='1 day'>
 <deliver>contains(toLower($brokerName),'@BROKER@')</deliver>
 <sms-info>
 <sender>esptest@ec.rr.com</sender>
 <subject>You have been caught, $brokerName</subject>
 <from>ESP Broker Surveillance</from>
 <gateway>$sms</gateway>
 <phone>$phone</phone>
 </sms-info>
 <sms-contents>
 <text-content>You bought $quant1 shares of $symbol
 for $$price1 on $day at $time1. You then bought $symbol
 for customer $customer at $time2, after which you sold
 $quant3 shares of $symbol at $time3 for $$price3,
 thus making you a profit of $$profit.</text-content>
 </sms-contents>
 </sms>
 </delivery-channels>
</window-notification>

Because this example uses MMS, you need to define a different SMTP server. Any email
account referenced by that server must be specified in your SMTP configuration. The
window calculates fields to use when formatting notification messages to the broker. A
schema and a function context are defined.

When an event comes in, functions are run on the input event and schema data is
created. You can use values from either the input event or the schema data in the
message content. For example:

We noticed you bought $quant1 shares of $symbol for $$price1
on $day at $time1. You then bought $symbol for
customer $customer at $time2, after which
you sold $quant3 shares of $symbol at $time3
for $$price3, thus making you a profit of $$profit.

Note the number of variable references, some to the schema data (quant1, price1,
price3, ...), and some to the input data (symbol). Variable references are also used to
resolve the routing information for the notification:

<recipients>$email</recipients>
<gateway>$sms</gateway>
<phone>$phone</phone>

A function is used to determine when to send the notification. The same deliver function
is used for all channels.

<deliver>contains(toLower($brokerName),'@BROKER@')</deliver>

Whenever you see the notation @TOKEN@ in an XML model, this means that the token is
resolved when the project is loaded. These tokens can be resolved in one of three ways:

• on the command line, for example,dfesp_xml_server -BROKER pippin

• in your environment, for example, $ export BROKER=pippin

• in the properties for a project, for example, <property
name=’BROKER’>pippin</property>

In this case, you can specify which broker to use to send a notification.

Examples of Notification Windows 213

Example Written in C++
dfESPwindow_notification *notification =
 contquery->newWindow_notification("notify",NULL);
 notification->setSmtpConnection("mailhost.fyi.sas.com");

dfESPemail *email = notification->addEmail();
email->setThrottleInterval("5 minutes");
email->setSender("brenda.doe@orion.com");
email->setRecipients("$email");
email->setSubject("Investment Opportunity");
email->setFrom("ESP");
email->setTo("Wealthy Trader");
email->addText("You traded $quant shares of $symbol at $$price.
 You must have a lot of money!");
email->setTestMode(true);

contquery->addEdge(joinBrokerData,0,notification);

214 Chapter 11 • Creating Notification Windows

Chapter 12

Creating Pattern Windows

Overview of Pattern Windows . 215

State Definitions for Operator Trees . 218

Restrictions on Patterns . 220

Using Stateless Pattern Windows . 222

Enabling Pattern Compression . 222

Enabling the Heartbeat Interval . 223

Pattern Window Examples . 223
C++ Pattern Window Example . 223
XML Pattern Window Examples . 227

Overview of Pattern Windows
To create a pattern window, you do the following:

• specify a list of events of interest (EOIs)

• connect those events into an expression that use logical operators and optional
temporal conditions

Specify EOIs by providing the following:

• a pointer for the window from where the event is coming

• a string name for the EOI

• a WHERE clause on the fields of the incoming event, which can include a number of
unification variables (bindings)

The valid logical operators for the pattern logic used by SAS Event Stream Processing
are as follows:

Logical Operator Function

and All of its operands are true. Takes any number of operands.

or Any of its operands are true. Takes any number of operands.

215

Logical Operator Function

fby Each operand is followed by the one after it. Takes any number of
operands.

not The operand is not true. Takes one operand.

notoccur The operand never occurs. Takes one operand.

is Ensure that the following event is as specified.

To apply a temporal condition to the fby function, append the condition to the function
inside braces. For example, specify

fby{1 hour}(event1,event2)

when event2 happens within an hour of event1. Specify

fby{10 minutes}(event1,event2,event3)

when event3 happens within ten minutes of event2, and event2 happens within ten
minutes of event1

Temporal conditions can be driven in real time or can be defined by a date-time or
timestamp field. This field appears in the schema that is associated with the window that
feeds the pattern window. In this case, you must ensure that incoming events are in order
with respect to the field-based date-time or timestamp.

Here is an XML example of a pattern from a broker surveillance model:

<pattern>
 <events>
 <event name='e1'>((buysellflg==1) and (broker == buyer)
 and (s == symbol) and (b == broker) and (p == price))</event>
 <event name='e2'>((buysellflg==1) and (broker != buyer)
 and (s == symbol) and (b == broker))</event>
 <event name='e3'><![CDATA[((buysellflg==0) and (broker == seller)
 and (s == symbol) and (b == broker) and (p < price))]]></event>
 </events>
 <logic>fby{1 hour}(fby{1 hour}(e1,e2),e3)</logic>
 ...
 </output>
 </pattern>
 <pattern>
 <events>
 <event name='e1'>((buysellflg==0) and (broker == seller)
 and (s == symbol) and (b == broker))</event>
 <event name='e2'>((buysellflg==0) and (broker != seller)
 and (s == symbol) and (b == broker))</event>
 </events>
 <logic>fby{10 minutes}(e1,e2)</logic>
 ...
 </pattern>
</patterns>
</window-pattern>

Here is an XML example of a pattern from an e-commerce model:

<pattern>

216 Chapter 12 • Creating Pattern Windows

 <events>
 <event name='e1'>eventname=='ProductView'
 and c==customer and p==product</event>
 <event name='e2'>eventname=='AddToCart'
 and c==customer and p==product</event>
 <event name='e3'>eventname=='CompletePurchase'
 and c==customer</event>
 <event name='e4'>eventname=='Sessions'
 and c==customer</event>
 <event name='e5'>eventname=='ProductView'
 and c==customer and p!=product</event>
 <event name='e6'>eventname=='EndSession'
 and c==customer</event>
 </events>
 <logic>fby(e1,fby(e2,not(e3)),e4,e5,e6)</logic>
 ...
 </pattern>

You can define multiple patterns within a pattern window. Each pattern typically has
multiple EOIs, possibly from multiple windows or just one input window.

Suppose there is a single window that feeds a pattern window, and the associated schema
is as follows:

ID*:int32,symbol:string,price:double,buy:int32,tradeTime:date

Suppose further that are two EOIs and that their relationship is temporal. You are
interested in one event followed by the other within some period of time. This is
depicted in the following code segment:

// Someone buys (or sells IBM) at price > 100.00
// followed within 5 seconds of selling (or buying) SUN at price
// > 25.00
dfESPpatternUtils::patternNode *l,*r, *f;
l = p_01->addEvent(sw_01, "e1",
 "((symbol==\"IBM\") and (price > 100.00)
 and (b == buy))");
r = p_01->addEvent(sw_01, "e2",
 "((symbol==\"SUN\") and (price > 25.000)
 and (b == buy))");
f = p_01->fby_op(l, r, 5000000); // note 5,000,000 microseconds
 = 5 seconds

Here there are two EOIs, l and r. The beginning of the WHERE clauses is standard:
symbol==constant and price>constant. The last part of each WHERE clause
is where event unification occurs.

Because b is not a field in the incoming event, it is a free variable that is bound when an
event arrives. It matches the first portion of the WHERE clause for event l (for example,
an event for IBM with price > 100.00.) In this case, b is set to the value of the field buy
in the matched event. This value of b is then used in evaluating the WHERE clause for
subsequent events that are candidates for matching the second event of interest r. The
added unification clause and (b == buy) in each event of interest ensures that the
same value for the field buy appears in both matching events.

The FBY operator is sequential in nature. A single event cannot match on both sides.
The left side must be the first to match on an event, and then a subsequent event could
match on the right side.

Overview of Pattern Windows 217

When you want to apply a temporal condition to the FBY operator, append the condition
to the function inside braces. For example:

 fby{1 hour}(event1,event2)
fby{10 minutes}(event1,event2,event3)

In the first line of code, event2 happens within an hour of event1. In the second line,
event3 happens within ten minutes of event2, which happens within ten minutes of
event1.

The AND and OR operators are not sequential. Any incoming event can match EOIs on
either side of the operator and for the first matching EOI causes the variable bindings.
Take special care in this case, as this is rarely what you intend when you write a pattern.

For example, suppose that the incoming schema is as defined previously and you define
the following pattern:

// Someone buys or sells IBM at price > 100.00 and also
// buys or sells IBM at a price > 102.00 within 5 seconds.
l = p_01->addEvent(sw_01, "e1",
 "((symbol==\"IBM\") and (price > 100.00)");
r = p_01->addEvent(sw_01, "e2", "((symbol==\"IBM\") and (price
 > 102.00)");
f = p_01->and_op(l, r, 5000000); // note 5,000,000 microseconds
 = 5 seconds

Now suppose an event comes into the window where symbol is "IBM" and price is
"102.1". Because this is an AND operator, no inherent sequencing is involved, and the
WHERE clause is satisfied for both sides of the "and" by the single input event. Thus,
the pattern becomes true, and event l is the same as event r. This is probably not what
you intended. Therefore, you can make slight changes to the pattern as follows:

// Someone buys (or sells IBM) at price > 100.00 and <= 102.00
// and also buys or selld IBS) at a price > 102.00 within 5 seconds.
l = p_01->addEvent(sw_01, "e1",
 "(symbol==\"IBM\") and (price > 100.00) and
 (price <= 102.00)");
r = p_01->addEvent(sw_01, "e2", "(symbol==\"IBM\") and (price
 > 102.00)");
f = p_01->and_op(l, r, 5000000); // note 5,000,000 microseconds
 = 5 seconds

After you make these changes, the price clauses in the two WHERE clauses
disambiguate the events so that a single event cannot match both sides. This requires two
unique events for the pattern match to occur.

Suppose that you specify a temporal condition for an AND operator such that event l
and event r must occur within five seconds of one another. In that case, temporal
conditions for each of the events are optional.

State Definitions for Operator Trees
Operator trees can have one of the following states:

• initial - no events have been applied to the tree

• waiting - an event has been applied causing a state change, but the left (and right, if
applicable) arguments do not yet permit the tree to evaluate to TRUE or FALSE

218 Chapter 12 • Creating Pattern Windows

• TRUE or FALSE - sufficient events have been applied for the tree to evaluate to a
logical Boolean value

The state value of an operator sub-tree can be FIXED or not-FIXED. When the state
value is FIXED, no further events should be applied to it. When the state value is not-
FIXED, the state value could change based on application of an event. New events
should be applied to the sub-tree.

When a pattern instance fails to emit a match and destroys itself, it folds. The instance is
freed and removed from the active pattern instance list. When the top-level tree in a
pattern instance (the root node) becomes FALSE, the pattern folds. When it becomes
TRUE, the pattern emits a match and destroys itself.

An operator tree (OPT) is a tree of operators and EOIs. Given that EO refers to an event
of interest or operator tree (EOI | OPT):

not EOI
becomes TRUE and FIXED or FALSE and FIXED on the application of a single
event. It becomes TRUE if the event is applied it does not satisfy the event of
interest, and FALSE if it does

not OPT
is a Boolean negation. This remains in the waiting state until OPT evaluates to
TRUE or FALSE. Then it performs the logical negation. It only becomes FIXED
when OPT becomes FIXED

notoccur EOI
becomes TRUE on application of an event that does not satisfy the EOI, but it is not
marked FIXED. This implies that more events can be applied to it. As soon as it sees
an event that matches the EOI, it becomes FALSE and FIXED

notoccur OPT
this is not allowed

EO or EO
is an event that is always applied to all non-FIXED sub-trees. It becomes TRUE
when one of its two sub-trees become TRUE. It becomes FALSE when both of the
sub-trees becomes FASLE. It is FIXED when one of its sub-trees is TRUE and
FIXED if both of its sub-trees are FALSE and not FIXED

EO and EO
is an event that is always applied to all non-FIXED sub-trees. It becomes TRUE
when both of its two sub-trees become TRUE. It becomes FALSE when one of the
sub-trees becomes FALSE. It is FIXED when one of its sub-trees is FALSE and
FIXED or both of its sub-trees are TRUE and FIXED

EO FBY EO
attempts to complete the left hand side (LHS) with the minimal number of event
applications before applying events to the right hand side (RHS). The apply rule is as
follows:

• If the LHS is not TRUE or FALSE, apply event to the LHS until it become
TRUE or FALSE.

• If the LHS becomes FALSE, set the followed by state to FALSE and become
FIXED.

• If the LHS becomes TRUE, apply all further events to the RHS until the RHS
becomes TRUE or FALSE. If the RHS becomes FALSE, set the FBY state to
FALSE and FIXED, if it becomes TRUE set the FBY state toTRUE and FIXED.

This algorithm seeks the minimal length sequence of events that completes an FBY
pattern.

State Definitions for Operator Trees 219

is EOI
becomes TRUE on the application of an event that satisfies the EOI and FALSE
otherwise. Becomes FIXED on the first application of an event.

is OPT
this is not allowed

Sample operator trees and events Description

(a fby b) Detect a, ..., b, where ... can be any sequence.

(a fby ((notoccur c) and b)) Detect a, ..., b: but there can be no c between a
and b.

(a fby (not c)) fby (not (not b)) Detect a, X, b: when X cannot be c.

(((a fby b) fby (c fby d))
and (notoccur k))

Detect a, ..., b, ..., c, ..., d : but k does not occur
anywhere in the sequence.

a fby (notoccur(c) and b) Detect an FBY b with no occurrences of c in the
sequence.

is(a) fby is(b) Detect an FBY b directly, with nothing between a
and b.

a fby (b fby ((notoccur c) and d)) Detect a ... b ... d, with no occurrences of c
between a and b.

(notoccur c) and (a fby (b fby d)) Detect a ... b ... d, with no occurrences of c
anywhere.

Restrictions on Patterns
The following restrictions apply to patterns that you define in pattern windows:

• The data type of the key field must be int64.

• An event of interest should be used in only one position of the operator tree. For
example, the following code would return an error:

// Someone buys (or sells) IBM at price > 100.00
// followed within 5 seconds of selling (or buying)
// SUN at price > 25.00 or someone buys (or sells)
// SUN at price > 25.00 followed within 5 seconds
// of selling (or buying) IBM at price > 100.00
//
dfESPpatternUtils::patternNode *l,*r, *lp, *rp, *fp;
l = p_01->addEvent(sw_01, "e1",
 "((symbol==\"IBM\") and (price > 100.00)
 and (b == buy))");
r = p_01->addEvent(sw_01, "e2", "((symbol==\"SUN\") and
 (price > 25.000) and (b == buy))");
lp = p_01->fby_op(l, r, 5000000); // note microseconds

220 Chapter 12 • Creating Pattern Windows

rp = p_01->fby_op(r, l, 5000000); // note microseconds
fp = p_01->or_op(lp, rp, 5000000);

To obtain the desired result, you need four events of interest as follows:

dfESPpatternUtils::patternNode *l0,*r0, *l1, *r1, *lp, *rp, *fp;
l0 = p_01->addEvent(sw_01, "e1", "((symbol==\"IBM\") and
 (price > 100.00) and (b == buy))");
r0 = p_01->addEvent(sw_01, "e2", "((symbol==\"SUN\") and
 (price > 25.000) and (b == buy))");
l1 = p_01->addEvent(sw_01, "e3", "((symbol==\"IBM\") and
 (price > 100.00) and (b == buy))");
r1 = p_01->addEvent(sw_01, "e4", "((symbol==\"SUN\") and
 (price > 25.000) and (b == buy))");
lp = p_01->fby_op(l0, r0, 5000000); // note microseconds
rp = p_01->fby_op(l1, r1, 5000000); // note microseconds
fp = p_01->or_op(lp, rp, 5000000);

• Pattern windows work only on Insert events.

If there might be an input window generating updates or deletions, then you must
place a procedural window between the input window and the pattern window. The
procedural window then filters out or transforms non-insert data to insert data.

Patterns also generate only Inserts. The events that are generated by pattern windows
are indications that a pattern has successfully detected the sequence of events that
they were defined to detect. The schema of a pattern consists of a monotonically
increasing pattern HIT count in addition to the non-key fields that you specify from
events of interest in the pattern.

dfESPpattern::addOutputField() and dfESPpattern::addOutputExpression()

• When defining the WHERE clause expression for pattern events of interests, binding
variables must always be on the left side of the comparison (like bindvar ==
field) and cannot be manipulated.

For example, the following addEvent statement would be flagged as invalid:

e1 = consec->addEvent(readingsWstats, "e1",
 "((vmin < aveVMIN) and (rCNT==MeterReadingCnt) and (mID==meterID))");
e2 = consec->addEvent(readingsWstats, "e2",
 "((mID==meterID) and (rCNT+1==MeterReadingCnt) and (vmin < aveVMIN))");
op1 = consec->fby_op(e1, e2,2880000000l);

Consider the WHERE clause in e1. It is the first event of interest to match because
the operator between these events is a followed-by. It ensures that event field vmin
is less than field aveVMIN. When this is true, it binds the variable rCNT to the
current meter reading count and binds the variable mID to the meterID field.

Now consider e2. Ensure the following:

• the meterID is the same for both events

• the meter readings are consecutive based on the meterReadingCnt

• vmin for the second event is less than aveVMIN

The error in this expression is that it checked whether the meter readings were
consecutive by increasing the rCNT variable by 1 and comparing that against the
current meter reading. Variables cannot be manipulated. Instead, you confine
manipulation to the right side of the comparison to keep the variable clean.

Restrictions on Patterns 221

The following code shows the correct way to accomplish this check. You want to
make sure that meter readings are consecutive (given that you are decrementing the
meter reading field of the current event, rather than incrementing the variable).

e1 = consec->addEvent(readingsWstats, "e1",
 "((vmin < aveVMIN) and (rCNT==MeterReadingCnt) and (mID==meterID))");
e2 = consec->addEvent(readingsWstats, "e2",
 "((mID==meterID) and (rCNT==MeterReadingCnt-1) and (vmin < aveVMIN))");
op1 = consec->fby_op(e1, e2,2880000000l);

Using Stateless Pattern Windows
Pattern windows are insert-only with respect to both their input windows and the output
that they produce. The output of a pattern window is a monotonically increasing integer
ID that represents the number of patterns found in the pattern window. The ID is
followed by an arbitrary number of non-key fields assembled from the fields of the
events of interest for the pattern. Because both the input and output of a pattern window
are unbounded and insert-only, they are natural candidates for stateless windows (that is,
windows with index type pi_EMPTY). Usually, you want to have a copy window with a
retention policy follow any insert-only window.

Pattern windows are automatically marked as insert-only. They reject records that are not
iInserts. Thus, no problems are encountered when you use an index type of pi_EMPTY
with pattern windows. If a source window feeds the pattern window, it needs to be
explicitly told that it is insert-only, using the dfESPwindow::setInsertOnly()
call. This causes the source window to reject any events with an opcode other than
Insert, and permits an index type of pi_EMPTY to be used.

Stateless windows are efficient with respect to memory use. More than one billion events
have been run through pattern detection scenarios such as this with only modest memory
use (less than 500MB total memory).

Source Window [insert only, pi_EMPTY index] --> PatternWindow[insert only,
 pi_EMPTY index]

Enabling Pattern Compression
When an event affects a pattern and partially completes it, the event is stored in the
pattern instance for future use. When a pattern event completes through a later sequence
of events, the stored event is accessed. When the system has an exceptionally large
number of partially completed patterns, a large amount of memory might be required the
associated stored events. To address this issue, you can compress partially completed
patterns and then uncompress them upon pattern completion.

There are two ways to enable pattern compression on projects:

• In C++, call dfESPproject::setPatternCompression(true) before a
project is started.

• In XML, use the compress-open-patterns='true' attribute on a project
element.

222 Chapter 12 • Creating Pattern Windows

Pattern compression can be useful when a project has a very large number of open
patterns waiting for possible completion. It can decrease pattern memory usage by as
much as 40% at the expense of a slight increase in CPU usage.

Enabling the Heartbeat Interval
Patterns that can time out are sent heartbeats by the system. When there are millions of
open, uncompleted patterns, the default heartbeat interval of one second is too short. In
this case, the system attempts to time out every pattern each second, and that can slow
system performance.

To remedy this problem, tune the heartbeat interval:

• In C++, call dfESPproject::setHeartbeatInterval(int number-of-
seconds)before you start the project.

• In XML, use the following attribute on the project element: heartbeat-
interval='number-of-seconds'

Set the number-of-seconds as high as is practical.

Pattern Window Examples

C++ Pattern Window Example
Here is a complete example of a simple pattern window. For more examples, refer to the
packaged examples provided with the product.

#define MAXROW 1024
#include <iostream>

// Include class definitions for modeling objects.
//
#include "dfESPwindow_source.h"
#include "dfESPwindow_pattern.h"
#include "dfESPevent.h"
#include "dfESPcontquery.h"
#include "dfESPengine.h"
#include "dfESPproject.h"

using namespace std;

// Declare a context data structures to ensure the
// callback function thread safe and set window name
//
struct callback_ctx {
 dfESPthreadUtils::mutex *lock;
 dfESPstring windowName;
 };

// This is a simple callback function that can be registered
// for a window's new event updates. It receives the schema
// of the events it is passed, and a set of 1 or more events

Pattern Window Examples 223

// bundled into a dfESPeventblock object. It also has an optional
// context pointer for passing state into this cbf. In this case
// the context structure is used to ensure that the function is
// thread safe.
//
void winSubscribeFunction(dfESPschema *os, dfESPeventblockPtr ob, void *cntx) {
 callback_ctx *ctx = (callback_ctx *)cntx;

 ctx->lock->lock();
 int count = ob->getSize();
// get the size of the Event Block
 if (count>0) {
 char buff[MAXROW+1];
 for (int i=0; i<count; i++) {
 ob->getData(i)->toStringCSV(os, (char *)buff, MAXROW);
// get event as CSV
 cout << buff << endl;
// print it
 if (ob->getData(i)->getOpcode() == dfESPeventcodes::eo_UPDATEBLOCK)
 ++i;
// skip the old record in the update block
 } //for
 } //if
 ctx->lock->unlock();
 }

int main(int argc, char *argv[]) {

 //
 // -------------- BEGIN MODEL (CONTINUOUS QUERY DEFINITIONS) ---------------------
 //

 // Create the single engine top level container which sets up dfESP
 // fundamental services such as licensing, logging, pub/sub, and threading.
 // Engines typically contain 1 or more project containers.
 // @param argc the parameter count as passed into main.
 // @param argv the paramter vector as passed into main.
 // currently the dfESP library only looks for -t <textfile.name> to write output,
 // -b <badevent.name> to write any bad events (events that failed
 // to be applied to a window index).
 // -r <restore.path> path used to restore a previously persisted
 // engine state.
 // @param id the user supplied name of the engine.
 // @param pubsub pub/sub enabled/disabled and port pair, formed
 // by calling static function dfESPengine::pubsubServer()
 // @param logLevel the lower threshold for displayed log messages
 // - default: dfESPLLInfo,
 // @see dfESPLoggingLevel
 // @param logConfigFile a log4SAS configuration file
 // - default: configure logging to go to standard out.
 // @param licKeyFile a FQPN to a license file
 // - default: $DFESP_HOME/etc/license/esp.lic
 // @return the dfESPengine instance.
 //
 dfESPengine *myEngine =
 dfESPengine::initialize(argc, argv, "engine", pubsub_DISABLE);

224 Chapter 12 • Creating Pattern Windows

 if (myEngine == NULL) {
 cerr <<"Error: dfESPengine::initialize() failed using framework defaults\n";
 return 1;
 }

 // Define the project, this is a container for one or more
 // continuous queries.
 //
 dfESPproject *project_01 = myEngine->newProject("project_01");

 // Define a continuous query object. This is the first level
 // container for windows. It also contains the window to window
 // connectivity information.
 //
 dfESPcontquery *cq_01;
 cq_01 = project_01->newContquery("contquery_01");

 // Build the source window. We specify the window name, the schema
 // for events, and the type of primary index, in this case a
 // red/black tree index.
 //
 dfESPwindow_source *sw_01;
 sw_01 = cq_01->newWindow_source("sourceWindow_01", dfESPindextypes::pi_RBTREE,
 dfESPstring("ID*:int32,symbol:string,price:double,buy:int32,tradeTime:date"));

 dfESPwindow_pattern *pw_01;
 pw_01 = cq_01->newWindow_pattern("patternWindow_01", dfESPindextypes::pi_RBTREE,
 dfESPstring("ID*:int64,ID1:int32,ID2:int32"));
 // Create a new pattern
 //
 dfESPpattern* p_01 = pw_01->newPattern();
 { dfESPpatternUtils::patternNode *e1,*e2, *o1;

 // Pattern of interest: someone buys IBM at price > 100.00
 // followed within 5 second of buying SUN at price > 25.00.
 e1 = p_01->addEvent(sw_01, "e1",
 "((symbol==\"IBM\") and (price > 100.00) and (b == buy))");
 e2 = p_01->addEvent(sw_01, "e2",
 "((symbol==\"SUN\") and (price > 25.000) and (b == buy))");
 o1 = p_01->fby_op(e1, e2, 5000000); // e1 fby e2 within 5 sec

 p_01->setPattern(o1); //set the pattern top of op tree

 // Setup the generated event for pattern matches.
 p_01->addOutputField("ID", e1);
 p_01->addOutputField("ID", e2);
 p_01->addTimeField(sw_01, "tradeTime");
 //set tradeTime field for temporal check
 }

 // Add the subscriber callback to the pattern window.
 // Callback context structure is used to ensure the function
 // thread safe.
 callback_ctx pattern_ctx;
 pattern_ctx.lock = dfESPthreadUtils::mutex::mutex_create();

Pattern Window Examples 225

 // create the lock
 pw_01->addSubscriberCallback(winSubscribeFunction, (void *)&pattern_ctx);

 // Add the connectivity information to the continuous query. This
 // means sw_o1 --> pw_01
 //
 cq_01->addEdge(sw_01, pw_01);

 // Define the project's thread pool size and start it.
 //
 // **Note** after we start the project here, we do not see
 // anything happen, as no data has yet been put into the
 // continuous query.
 //

 project_01->setNumThreads(2);
 myEngine->startProjects();

 //
 // ------- END MODEL (CONTINUOUS QUERY DEFINITION) ---------
 //

 //
 // At this point the project is running in the background using
 // the defined thread pool. We'll use the main thread that
 // we are in to inject some data.

 // Generate some test event data and inject it into the source window.
 bool eventFailure;
 dfESPptrVect<dfESPeventPtr> trans;
 dfESPevent *p;

 p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,1,IBM,101.45,0,2011-07-20 16:09:01",
 eventFailure);
 if (eventFailure) {
 cerr << "Creating event failed. Aborting..." << endl;
 abort();
 }
 trans.push_back(p);
 dfESPeventblockPtr ib = dfESPeventblock::newEventBlock(&trans,
 dfESPeventblock::ebt_TRANS);
 trans.free();
 project_01->injectData(cq_01, sw_01, ib);

 p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,2,IBM,101.45,1,2011-07-20 16:09:02",
 eventFailure);
 if (eventFailure) {
 cerr << "Creating event failed. Aborting..." << endl;
 abort();
 }
 trans.push_back(p);
 ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
 trans.free();

226 Chapter 12 • Creating Pattern Windows

 project_01->injectData(cq_01, sw_01, ib);

 p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,3,SUN,26.0,1,2011-07-20 16:09:04",
 eventFailure);
 if (eventFailure) {
 cerr << "Creating event failed. Aborting..." << endl;
 abort();
 }
 trans.push_back(p);
 ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
 trans.free();
 project_01->injectData(cq_01, sw_01, ib);

 p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,4,SUN,26.5,0,2011-07-20 16:09:05",
 eventFailure);
 if (eventFailure) {
 cerr << "Creating event failed. Aborting..." << endl;
 abort();
 }
 trans.push_back(p);
 ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
 trans.free();
 project_01->injectData(cq_01, sw_01, ib);

 p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,5,IBM,101.45,1,2011-07-20 16:09:08",
 eventFailure);
 if (eventFailure) {
 cerr << "Creating event failed. Aborting..." << endl;
 abort();
 }
 trans.push_back(p);
 ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
 trans.free();
 project_01->injectData(cq_01, sw_01, ib);

 project_01->quiesce();
 // wait until system stops processing before shutting down

 // Now shutdown.
 myEngine->shutdown();
 return 0;
 }

After you execute this code, you obtain these results:

I,N: 0,2,3
I,N: 1,1,4

XML Pattern Window Examples
<window-pattern name='front_running'>

Pattern Window Examples 227

 <schema-string>
 id*:int64,broker:int32,brokerName:string,typeFlg:int32,symbol:
 string,tstamp1:date,tstamp2:date,tstamp3:date,tradeId1:
 int32,tradeId2:int32,tradeId3:int32
 </schema-string>
 <patterns>
 <pattern>
 <events>
 <event name='e1'>((buysellflg==1) and (broker == buyer)
 and (s == symbol) and (b == broker)
 and (p == price))
 </event>
 <event name='e2'>((buysellflg==1) and (broker != buyer)
 and (s == symbol) and (b == broker))
 </event>
 <event name='e3'><![CDATA[
 buysellflg==0) and (broker == seller)
 and (s == symbol) and (b == broker)
 and (p < price))]]></event>
 </events>
 <logic>fby(e1,e2,e3)</logic>
 <output>
 <field-selection name='broker' node='e1'/>
 <field-selection name='brokerName' node='e1'/>
 <field-expr>1</field-expr>
 <field-selection name='symbol' node='e1'/>
 <field-selection name='date' node='e1'/>
 <field-selection name='date' node='e2'/>
 <field-selection name='date' node='e3'/>
 <field-selection name='id' node='e1'/>
 <field-selection name='id' node='e2'/>
 <field-selection name='id' node='e3'/>
 </output>
 </pattern>
 <pattern>
 <events>
 <event name='e1'>((buysellflg==0) and (broker == seller)
 and (s == symbol) and (b == broker))
 </event>
 <event name='e2'>((buysellflg==0) and (broker != seller)
 and (s == symbol) and (b == broker))
 </event>
 </events>
 <logic>fby(e1,e2)</logic>
 <output>
 <field-selection name='broker' node='e1'/>
 <field-selection name='brokerName' node='e1'/>
 <field-expr>2</field-expr>
 <field-selection name='symbol' node='e1'/>
 <field-selection name='date' node='e1'/>
 <field-selection name='date' node='e2'/>
 <field-expr> </field-expr>
 <field-selection name='id' node='e1'/>
 <field-selection name='id' node='e2'/>
 <field-expr>0</field-expr>
 </output>

228 Chapter 12 • Creating Pattern Windows

 </pattern>
 </patterns>
</window-pattern>

<window-pattern name='sigma2Pattern_calc' index='pi_EMPTY' >
 <schema>
 <fields>
 <field name='alertID' type='int64' key='true'/>
 <field name='ID1' type='int64'/>
 <field name='element1' type='string'/>
 <field name='attribute1' type='string'/>
 <field name='timestamp1' type='stamp'/>
 <field name='value1' type='double'/>
 <field name='valueAve1' type='double'/>
 <field name='valueMin1' type='double'/>
 <field name='valueMax1' type='double'/>
 <field name='valueStd1' type='double'/>
 <field name='ID2' type='int64'/>
 <field name='element2' type='string'/>
 <field name='attribute2' type='string'/>
 <field name='timestamp2' type='stamp'/>
 <field name='value2' type='double'/>
 <field name='valueAve2' type='double'/>
 <field name='valueMin2' type='double'/>
 <field name='valueMax2' type='double'/>
 <field name='valueStd2' type='double'/>
 </fields>
 </schema>
 <patterns>
 <pattern index='element,attribute'>
 <events>
 <event source='original2stdDevCheck' name='e1'>
 (value<(valueAve-2*valueStd))
 and (r_cnt==elementReadingCount)
 and (pid==element and aid==attribute)
 </event>
 <event source='original2stdDevCheck' name='e2'>
 (pid==element and aid==attribute)
 and (r_cnt>=elementReadingCount-2)
 and (value<(valueAve-2*valueStd))
 </event>
 </events>
 <logic>fby{18600000001 seconds}(e1, e2)</logic>
 <output>
 <field-selection name='sequence' node='e1'/>
 <field-selection name='element' node='e1'/>
 <field-selection name='attribute' node='e1'/>
 <field-selection name='timestamp' node='e1'/>
 <field-selection name='value' node='e1'/>
 <field-selection name='valueAve' node='e1'/>
 <field-selection name='valueMin' node='e1'/>
 <field-selection name='valueMax' node='e1'/>
 <field-selection name='valueStd' node='e1'/>
 <field-selection name='sequence' node='e2'/>
 <field-selection name='element' node='e2'/>
 <field-selection name='attribute' node='e2'/>

Pattern Window Examples 229

 <field-selection name='timestamp' node='e2'/>
 <field-selection name='value' node='e2'/>
 <field-selection name='valueAve' node='e2'/>
 <field-selection name='valueMin' node='e2'/>
 <field-selection name='valueMax' node='e2'/>
 <field-selection name='valueStd' node='e2'/>
 </output>
 </pattern>
 </patterns>
 </window-pattern>

<pattern>
 <events>
 <event name='e1'>eventname=='ProductView'
 and c==customer and p==product</event>
 <event name='e2'>eventname=='AddToCart'
 and c==customer and p==product</event>
 <event name='e3'>eventname=='CompletePurchase'
 and c==customer</event>
 <event name='e4'>eventname=='Sessions'
 and c==customer</event>
 <event name='e5'>eventname=='ProductView'
 and c==customer and p!=product</event>
 <event name='e6'>eventname=='EndSession'
 and c==customer</event>
 </events>
 <logic>fby(e1,fby(e2,not(e3)),e4,e5,e6)</logic>
 ...

230 Chapter 12 • Creating Pattern Windows

Chapter 13

Creating Procedural Windows

Overview to Procedural Windows . 231

Using C++ Window Handlers . 232

Using DS2 Window Handlers . 234
Overview of DS2 Window Handlers . 234
General Structure of a DS2 Input Handler . 235
Examples . 235
Event Stream Processor to DS2 Data Type Mappings and Conversions 237

DATA Step Window Handlers . 238
Overview . 238
Configuration . 238
Referencing SAS Event Stream Processing in a DATA Step 239
Supported Data Types . 240
Known Limitations . 240

XML Examples of Procedural Windows . 241

Overview to Procedural Windows
A procedural window enables the specification of an arbitrary number of input windows
and input handler functions for each input window. You can write procedural window
input handlers in C++ or DS2. When an input event arrives, the input handler registered
for the matching window is called. The events produced by this input handler function
are then output.

231

Figure 13.1 Procedural Window with Input Handlers

Procedural Window

Input Window 1 Input Window 2 Input Window N

Input
Window 1
Handler
(C++ or DS2)

Input
Window 2
Handler
(C++ or DS2)

Input
Window N
Handler
(C++ or DS2)

In order for the state of the procedural window to be shared across handlers, an instance-
specific context object (such as dfESPpcontext) is passed to the handler function.
Each handler has full access to what is in the context object. The handler can store data
in this context for use by other handlers, or by itself during future invocations.

Using C++ Window Handlers
Here is an example of the signature of a procedural window handler written in C++.

typedef bool (*dfESPevent_func)(dfESPpcontext *pc,
 dfESPschema *is, dfESPeventPtr nep,
 dfESPeventPtr oep, dfESPschema *os,
 dfESPptrVect<dfESPeventPtr>&oe);

The procedural context is passed to the handler. The input schema, the new event, and
the old event (in the case of an update) are passed to the handler when it is called. The
final parameters are the schema of the output event (the structure of events that the
procedural window produces) and a reference to a vector of output events. It is this
vector where the handler needs to push its computed events.

Only one input window is defined, so define only one handler function and call it when a
record arrives.

// This handler functions simple counts inserts, updates,
// and deletes.
// It generates events of the form "1,#inserts,#updates,
// #deletes"
//
bool opcodeCount(dfESPpcontext *mc, dfESPschema *is,
 dfESPeventPtr nep, dfESPeventPtr oep,
 dfESPschema *os, dfESPptrVect
 <dfESPeventPtr>& oe) {

 derivedContext *ctx = (derivedContext *)mc;
 // Update the counts in the past context.
 switch (nep->getOpcode()) {
 case dfESPeventcodes::eo_INSERT:
 ctx->numInserts++;

232 Chapter 13 • Creating Procedural Windows

 break;
 case dfESPeventcodes::eo_UPDATEBLOCK:
 ctx->numUpdates++;
 break;
 case dfESPeventcodes::eo_DELETE:
 ctx->numDeletes++;
 break;
 }

 // Build a vector of datavars, one per item in our output
 // schema, which looks like: "ID*:int32,insertCount:
 // int32,updateCount:int32,deleteCount:int32"

dfESPptrVect<dfESPdatavarPtr> vect;
os->buildEventDatavarVect(vect);

// Set the fields of the record that we are going to produce.

vect[0]->setI32(1); // We have a key of only 1, we keep updating one record.
vect[1]->setI32(ctx->numInserts);
vect[2]->setI32(ctx->numUpdates);
vect[3]->setI32(ctx->numDeletes);

// Build the output Event, and push it to the list of output
// events.

dfESPeventPtr ev = new dfESPevent();
ev->buildEvent(os, vect, dfESPeventcodes::eo_UPSERT,
 dfESPeventcodes::ef_NORMAL);
oe.push_back(ev);

// Free space used in constructing output record.
vect.free();
return true;

The following example shows how this fits together in a procedural window:

dfESPproject *project_01;
project_01 = theEngine->newProject("project_01");

dfESPcontquery *cq_01;
cq_01 = project_01->newContquery("cq_01");

dfESPstring source_sch = dfESPstring("ID*:int32,symbol:
 string,price:double");
dfESPstring procedural_sch = dfESPstring("ID*:int32,insertCount:
 int32,updateCount:int32,
 deleteCount:int32");

dfESPwindow_source *sw;
sw = cq_01->newWindow_source("source window",
 dfESPindextypes::pi_HASH,
 source_sch);

dfESPwindow_procedural *pw;
pw = cq_01->newWindow_procedural("procedural window",
 dfESPindextypes::pi_RBTREE,

Using C++ Window Handlers 233

 procedural_sch);

// Create our context, and register the input window and
// handler.
//
derivedContext *mc = new derivedContext();
mc->registerMethod(sw, opcodeCount);

pw->registerMethodContext(mc);

Now whenever the procedural window sees an event from the source window (sw), it
calls the handler opcodeCount with the context mc, and produces an output event.

An application can use the dfESPengine::logBadEvent() member function from a
procedural window to log events that it determines are invalid. For example, you can use
the function to permit models to perform data quality checks and log events that do not
pass. There are two common reasons to reject an event:

• The event contains a null value in one of the key fields.

• The opcode that is specified conflicts with the existing window index (for example,
two Inserts of the same key, or a Delete of a non-existing key).

Using DS2 Window Handlers

Overview of DS2 Window Handlers
When you write a procedural window handler in the DS2 programming language, the
program is declared as a character string and set in the procedural windows context.

Here is a simple example:

char *DS2_program_01 =
 "ds2_options cdump;"
 "data esp.out;"
 " dcl double cost;"
 " method run();"
 " set esp.in;"
 " cost = price * quant;"
 " end;"
 "enddata;"

The window handler is then added to the procedural window's context, before the
context is registered with the procedural window proper.

/* declare the next context */
dfESPpcontext *pc_01 = new dfESPpcontext;
/* register the DS2 handler in the context */
pc_01->registerMethod_ds2(sw_01, DS2_program_01);
/* register the context with the procedural window */
pw_01->registerMethodContext(pc_01);

All fields of the input window are seen as variables in DS2 programs, so can be used in
calculations. The variable _opcode is available and takes the integer values 1 (Insert), 2
(Update), 3(Delete), 4 (Upsert), or 5 (Safe Delete). The variable _flag is available and
takes the integer values 1 (Normal) or 3(Retention). The variables exported from the
DS2 program are all the input variables plus any global variables declared. This set of

234 Chapter 13 • Creating Procedural Windows

variables is then filtered by the schema field names of the procedural window to form
the output event.

You can retain the state of a variable in a DS2 program. The state remains valid during
the life of the project. For example, the retain statement in the following DS2 data
block makes the sequence variable static, maintaining state from call to call. The
variable is tracked between rows within an event block and across event blocks.

<ds2-code source='MMD1'>
 <![CDATA[
 ds2_options cdump;
 data esp.out;
 dcl integer sequence;
 retain sequence 0;
 method run();
 set esp.in;
 sequence = sequence + 1;
 end;
 enddata;
]]>
 </ds2-code>

General Structure of a DS2 Input Handler
DS2 input handlers use the following boilerplate definition:

ds2_options cdump;
 data esp.out;
 global_variable_declaration; /* global variable block */
 method run();
 set esp.in;
 computations; /* computational statements */
 end;
enddata;

Examples
input schema:
 "ID*:int32,symbol:string,size:int32,price:double"

 output (procedural schema):
 "ID*:int32,symbol:string,size:int32,price:double,cost:double"

 ds2_options cdump;
 data esp.out;
 dcl double cost;
 method run();
 set esp.in;
 cost = price * size; /* compute the total cost */
 end;
 enddata;

Here is a procedural window with one input window that does no computation. It remaps
the key structure, and omits some of the input fields:

input schema:
 "ID*:int32,symbol:string,size:int32,price:double,traderID:int32"

Using DS2 Window Handlers 235

 output (procedural schema):
 "kID*:int64,symbol:string,cost:double"

 ds2_options cdump;
 data esp.out;
 dcl double cost;
 dcl bigint kID;
 method run();
 set esp.in;
 kID = 1000000000*traderID; /* put traderID in digits 10,11, ...*/
 kID = kID + ID; /* put ID in digits 0,1, ... 9 */
 cost = price * size; /* compute the total cost */
 end;
 enddata;

Note: This DS2 code produces the following output: {ID, symbol, size, price, traderID,
cost, kID}, which when filtered through the output schema is as follows: {kID,
symbol, cost}

Here is a procedural window with one input window that augments an input event with a
letter grade based on a numeric grade in the input:

input schema:
 "studentID*:int32,testNumber*:int32,testScore:double"

 output (procedural schema):
 "studentID*:int32,testNumber*:int32,testScore:double,testGrade:string"

 ds2_options cdump;
 data esp.out;
 dcl char(1) testGrade;
 method run();
 set esp.in;
 testGrade = select
 when (testScore >= 90) 'A'
 when (testScore >= 80) 'B'
 when (testScore >= 70) 'C'
 when (testScore >= 60) 'D'
 when (testScore >= 0) 'F'
 end;
 enddata;

Here is a procedural window with one input window that augments an input event with
the timestamp of when it was processed by the DS2 Handler:

input schema:
 "ID*:int32,symbol:string,size:int32,price:double"

 output (procedural schema):
 "ID*:int32,symbol:string,cost:double,processedStamp:stamp"

 ds2_options cdump;
 data esp.out;
 method run();
 set esp.in;
 processedStamp = to_timestamp(datetime());

236 Chapter 13 • Creating Procedural Windows

 end;
 enddata;

Here is a procedural window with one input window that filters events with an even ID.
It produces two identical events (with different keys) for those events with an odd ID:

input schema:
 "ID*:int32,symbol:string,size:int32,price:double"

 output (procedural schema):
 "ID*:int32,symbol:string,size:int32,price:double"

 ds2_options cdump;
 data esp.out;
 method run();
 set esp.in;
 if MOD(ID, 2) = 0 then return;
 output;
 ID = ID + 1;
 output;
 end;
 enddata;

Given this input:

1,ibm,1000,100.1
 2,nec,2000,29.7
 3,ibm,2000,100.7
 4,apl,1000,300.2

The following output is produced:

1,ibm,1000,100.1
 2,ibm,1000,100.1
 3,ibm,2000,100.7
 4,ibm,2000,100.7

Event Stream Processor to DS2 Data Type Mappings and
Conversions

The following mapping of event stream processor to DS2 data types is supported:

Event Stream Processor Data
Type DS2 Data Type

ESP_INT32 TKTS_INTEGER

ESP_INT64 TKTS_BIGINT

ESP_DOUBLE TKTS_DOUBLE

ESP_TIMESTAMP

ESP DATETIME

TKTS_TIMESTAMP

TKTS DATE

TKTS TIME

Using DS2 Window Handlers 237

Event Stream Processor Data
Type DS2 Data Type

ESP_UTF8STR TKTS_VARCHAR

TKTS CHAR

The ESP_MONEY data type is not supported.

Here is a conversion matrix. If a data type does not appear in the matrix (for example,
NVarchar), conversion is not supported for it.

From/To Integer BigInt Double Date Time Timestamp Char Varchar

int32 x

int64 x

double x

datetime x x x

timestamp x x x

utf8str x x

DATA Step Window Handlers

Overview
When you write a procedural window handler using DATA step statements, the window:

• receives an incoming event

• executes DATA step code against the data in the event

• returns an output event

All fields in the input window are seen as variables by the DATA step.

Use a SET statement to receive the event and populate the DATA step variables. Use an
OUTPUT statement to create an Upsert event, which is returned to the procedural
window. Both the SET and OUTPUT statements reference the event stream processing
libref, which requires the sasioesp load module to be in the SAS search path.

Configuration
When you configure a model that contains a procedural window that executes DATA
step code, the project must contain the <ds-initializer> element:

<ds-initialize
 sas-log-location='@SAS_LOG_DIR@'
 sas-connection-key='5555'
 sas-command='sas -path @DFESP_HOME@/lib'

238 Chapter 13 • Creating Procedural Windows

 />

• The sas-log-location is optional. If you do not specify it, the SAS log is placed
in the directory where the event stream processing server was started.

• The sas-connection-key is optional. This key is used as the shared memory and
semaphore key to communicate with Base SAS. It is a system-level resource (like a
port) and needs to be unique per event stream processing server executing on the
system. When there is only one event stream processing server running on the
system, specify the default value of 5555.

• The sas-command starts a SAS session. It requires the -path option in order to
find the SAS Event Stream Processing access engine.

Within the procedural window itself, specify the <ds-code> element as follows:

<ds-code source='request'
 trace='false'
 ds-file='@SAS_SOURCE_DIR@/score.sas'
 connection-timeout='5'
 max-string-length='32'
 />

• The source attribute designates the source window to which the remaining
attributes apply.

• The trace flag turns on output to the SAS log. Use this flag only during the model
development phase with small amounts of test data.

• The ds-file attribute identifies which SAS program executes on events that arrive
from the source window.

• The connection-timeout is measured in seconds. The default value is 60
seconds. Consider increasing the value under the following circumstances:

• when your SAS code is complex

• when your code takes a long time to compile

• when Base SAS performs extensive one time initialization, such as loading hash
tables

• The max-string-length attribute communicates to Base SAS the maximum
length of any string sent in an event from SAS Event Stream Processing to Base
SAS.

Referencing SAS Event Stream Processing in a DATA Step
Reference SAS Event Stream Processing in a DATA step as follows:

data esp.output;
 set esp.input;
 score = a * ranuni(104) + b;
 run;

• The DATA statement must designate esp.output as the output data set. When an
observation is output to that data set, it actually is returned to the procedural window
as an Upsert event.

• The SET statement waits for the arrival of an event, and moves event data into
DATA step variables.

DATA Step Window Handlers 239

Supported Data Types
The following mapping of event stream processor to DATA step data types is supported:

Event Stream Processor Data
Type DATA Step Data Type

ESP_INT32 Numeric variable. ESP NULL values map to SAS missing
values, and vice versa.

ESP_INT64 Numeric variable. ESP NULL values map to SAS missing
values, and vice versa.

ESP_DOUBLE Numeric variable. ESP NULL values map to SAS missing
values, and vice versa.

ESP_TIMESTAMP

ESP DATETIME

Numeric variable whose value is the number of seconds
since Jan 1, 1960. ESP NULL values map to SAS missing
values and vice versa. .

ESP_UTF8STR Character Variable. SAS Character variables are trimmed
before being returned to SAS Event Stream Processing.

ESP_MONEY Not supported.

Known Limitations
• Currently this functionality is supported only on Linux platforms

• Some DATA step statements and options do not make sense when you use them in a
real-time event processing context. For example, you should not use the END=
option in the SET statement. In a real-time system, it is not known whether there are
more records to come.

• The procedural window uses shared memory and system semaphores to
communicate with Base SAS. These are system wide resources, similar to sockets.
Therefore, event stream processing servers that run on the same system cannot use
the same set of keys to communicate with Base SAS. You can use the sas-
connection-key attribute on the ds-initialize element to alter the starting
key for one of the event stream processing servers.

• SAS Event Stream Processing supports mixed-case field names. Base SAS does not.

• SAS Event Stream Processing supports varying length strings. The SAS access
engine interface does not. Use the max-string-length attribute on the
procedural window's ds-code element to declare the length of the maximum
expected string value that is sent to Base SAS.

240 Chapter 13 • Creating Procedural Windows

XML Examples of Procedural Windows
You can write procedural windows in XML using the window-procedural element.
For more information about this element, see Chapter 4, “Using the XML Layer,”.

<window-procedural name='pw_01'>
 <context-plugin name='libmethod' function='get_derived_context'/>
 <schema>
 <fields>
 <field name='ID' type='int32' key='true' />
 <field name='insertCount' type='int32' />
 <field name='updateCount' type='int32'/>
 <field name='deleteCount' type='int32'/>
 </fields>
 </schema>
 <plugin source='sourceWindow_01' name='libmethod' function='countOpcodes'/>
 <connectors>
 <connector class='fs'>
 <properties>
 <property name='type'>sub</property>
 <property name='fstype'>csv</property>
 <property name='fsname'>procedural1.csv</property>
 <property name='snapshot'>true</property>
 </properties>
 </connector>
 </connectors>
</window-procedural>

<window-procedural name='finalEmptySrcStats'>
 <schema>
 <fields>
 <field name='key' type='int32' key='true'/>
 <field name='srcNullCount' type='int32'/>
 <field name='srcNullCount' type='int32'/>
 <field name='srcZoneURINullCount' type='int32'/>
 <field name='cURINullCount' type='int32'/>
 </fields>
 </schema>
 <ds2-code source='emptySrcStats_compute'>
 <![CDATA[
 ds2_options cdump;
 data esp.out;
 dcl integer key;
 method run();
 set esp.in;
 key = 1;
 _opcode = 4;
 end;
 enddata;
]]>
 </ds2-code>
</window-procedural>

XML Examples of Procedural Windows 241

242 Chapter 13 • Creating Procedural Windows

Chapter 14

Advanced Window Operations

Implementing Periodic (or Pulsed) Window Output . 243

Splitting Generated Events across Output Slots . 244
Overview . 244
Splitter Functions . 244
Splitter Expressions . 245

Marking Events as Partial-Update on Publish . 246
Overview . 246
Publishing Partial Events into a Source Window . 246
Examples . 247

Understanding Retention . 248

Understanding Primary and Specialized Indexes . 250
Overview . 250
Fully Stateful Indexes . 251
Using the pi_HLEVELDB Primary Index with Big Dimension Tables 252
Non-Stateful Index . 256

Persist and Restore Operations . 257

Gathering and Saving Latency Measurements . 259

Enabling Finalized Callback . 262

Implementing Periodic (or Pulsed) Window
Output

In most cases, the SAS Event Stream ProcessingAPI is fully event driven. That is,
windows continuously produce output as soon as they transform input. But there might
be times when you want a window to hold data and then output a canonical batch of
updates. In this case, operations to common key values are collapsed into a single
operation.

Here are two cases where batched output might be useful:

• Visualization clients might want to get updates once a second because they cannot
visualize changes any faster than this. When the event data is pulsed, the clients take
advantage of the reduction of event data to visualize through the collapse around
common key values.

243

• A window that follows the pulsed window is interested in comparing the deltas
between periodic snapshots from that window.

Use the following call to add output pulsing to a window:

dfESPwindow::setPulseInterval(size_t us);

Note: Periodicity is specified in microseconds. However, given the clock resolution of
most non-real-time operating systems, the minimum value that you should specify
for a pulse period is 100 milliseconds.

Splitting Generated Events across Output Slots

Overview
All window types can register a splitter function or expression to determine what output
slot or slots should be used for a newly generated event. This enables you to send
generated events across a set of output slots.

Most windows send all generated events out of output slot 0 to zero of more downstream
windows. For this reason, it is not standard for most models to use splitters. Using
window splitters can be more efficient than using filter windows off a single output slot.
This is especially true, for example, when you are performing an alpha-split across a set
of trades or a similar task.

Using window splitters is more efficient than using two or more subsequent filter
windows. This is because the filtering is performed a single time at the window splitter
rather than multiple times for each filter. This results in less data movement and
processing.

Splitter Functions
Here is a prototype for a splitter function.

size_t splitterFunction(dfESPschema *outputSchema, dfESPeventPtr nev,
 dfESPeventPtr oev);

This splitter function receives the schema of the events supplied, the new and old event
(only non-null for update block), and it returns a slot number.

Here is how you use the splitter for the source window (sw_01) to split events across
three copy windows: cw_01, cw_02, cw_03.

sw_01->setSplitter(splitterFunction);
cq_01->addEdge(sw_01, 0, cw_01);
cq_01->addEdge(sw_01, 1, cw_02);
cq_01->addEdge(sw_01, -1, cw_03);

The dfESPwindow::setSplitter() member function is used to set the user-
defined splitter function for the source window. The dfESPcontquery::addEdge()
member function is used to connect the copy windows to different output slots of the
source window.

When adding an edge between windows in a continuous query, specify the slot number
of the parent window where the receiving window receives its input events. If the slot
number is -1, it receives all the data produced by the parent window regardless of the
splitter function.

244 Chapter 14 • Advanced Window Operations

If no splitter function is registered with the parent window, the slots specified are
ignored, and each child window receives all events produced by the parent window.

Note: Do not write a splitter function that randomly distributes incoming records. Also,
do not write a splitter function that relies on a field in the event that might change.
The change might cause the updated event to generate a different slot value than
what was produced prior to the update. This can cause an Insert to follow one path
and a subsequent Update to follow a different path. This generates inconsistent
results, and creates indices in the window that are not valid.

Splitter Expressions
When you define splitter expressions, you do not need to write the function to determine
and return the desired slot number. Instead, the registered expression does this using the
splitter expression engine. Applying expressions to the previous example would look as
follows, assuming that you split on the field name "splitField", which is an integer:

sw_01->setSplitter("splitField%2");
cq_01->addEdge(sw_01, 0, cw_01);
cq_01->addEdge(sw_01, 1, cw_02);
cq_01->addEdge(sw_01, -1, cw_03);

Here, the dfESPwindow::setSplitter() member function is used to set the
splitter expression for the source window. Using splitter expressions rather than
functions can lead to slower performance because of the overhead of expression parsing
and handling. Most of the time you should not notice differences in performance.

dfESPwindow::setSplitter() has two additional optional parameters with
defaults set to NULL.

• initExp enables you to specify an initialization expression for the expression
engine used for this window's splitter.

• initRetType enables you to specify a return datavar value in those cases when
you want to pass state from the initialization expression to the C++ application
thread that makes the call. Most initialization expressions do not use return values
from the initialization.

This initialization message enables you to specify some setup state, perhaps variable
declarations and initialization, that you can use later in the splitter expression processing.

The full syntax for this call is as follows:

dfESPdatavarPtr setSplitter(const char* splitterExp, const char*
 initExp=NULL, dfESPdatavar::dfESPdatatype
 initRetType=dfESPdatavar::ESP_NULL);

You can find an example of window output splitter initialization in
splitter_with_initexp in $DFESP_HOME/examples/cxx. The example uses
the following setSplitter call where the initialize declares and sets an expression
engine variable to 1:

(void)sw_01->setSplitter("counter=counter+1; return counter%2",
 "integer counter\r\ncounter=1");

For each new event the initialize increments and mods the counter so that events rotate
between slots 0 and 1.

Splitting Generated Events across Output Slots 245

Marking Events as Partial-Update on Publish

Overview
In most cases, events are published into an engine with all fields available. Some of the
field values might be null. Events with Delete opcodes require only the key fields to be
non-null.

There are times when only the key fields and the fields being updated are desired or
available for event updates. This is typical for financial feeds. For example, a broker
might want to update the price or quantity of an outstanding order. You can update
selected fields by marking the event as partial-update (rather than normal).

When you mark events as partial-update, you provide values only for the key fields and
for fields that are being updated. In this case, the fields that are not updated are marked
as data type dfESPdatavar::ESP_LOOKUP. This marking tells SAS Event Stream
Processing to match key fields of an event retained in the system with the current event
and not to update the current event’s fields.

In order for a published event to be tagged as a partial-update, the event must contain all
non-null key fields that match an existing event in the source window. Partial updates are
applied to source windows only.

When using transactional event blocks that include partial events, be careful that all
partial updates are for key fields that are already in the source window. You cannot
include the insert of the key values with an update to the key values in a single event
block with transactional properties. This attempt fails and is logged because
transactional event blocks are treated atomically. All operations in that block are checked
against an existing window state before the transactional block is applied as a whole.

Publishing Partial Events into a Source Window
Consider these three points when you publish partial events into a source window.

• In order to construct the partial event, you must represent all the fields in the event.
Specify either the field type and value or a placeholder field that indicates that the
field value and type are missing. In this way, the existing field value for this key field
combination remains for the updated event. These field values and types can be
provided as datavars to build the event. Alternatively, they can be provided as a
comma-separated value (CSV) string.

If you use CSV strings, then use '^U' (such as, control-U, decimal value 21) to
specify that the field is a placeholder field and should not be updated. On the other
hand, if you use datavars to represent individual fields, then those fully specified
fields should be valid. Enter them as datavars with values (non-null or null).
Specify the placeholder fields as empty datavars of type
dfESPdatavar::ESP_LOOKUP.

• No matter what form you use to represent the field values and types, the
representation should be included in a call for the partial update to be published. In
addition to the fields, use a flag to indicate whether the record is a normal or partial
update. If you specify partial update, then the event must be an Update or an Upsert
that is resolved to an Update. Using partial-update fields makes sense only in the
context of updating an existing or retained source window event. This is why the

246 Chapter 14 • Advanced Window Operations

opcode for the event must resolve to Update. If it does not resolve to Update, an
event merge error is generated.

If you use an event constructor to generate this binary event from a CSV string, then
the beginning of that CSV string contains "u,p" to show that this is a partial-update.
If instead, you use event->buildEvent() to create this partial update event, then
you need to specify the event flag parameter as
dfESPeventcodes::ef_PARTIALUPDATE and the event opcode parameter as
dfESPeventcodes::eo_UPDATE.

• One or more events are pushed onto a vector and then that vector is used to create the
event block. The event block is then published into a source window. For
performance reasons, each event block usually contains more than a single event.
When you create the event block, you must specify the type of event block as
transactional or atomic using dfESPeventblock::ebt_TRANS or as normal
using dfESPeventblock::ebt_NORMAL.

Do not use transactional blocks with partial updates. Such usage treats all events in
the event block as atomic. If the original Insert for the event is in the same event
block as a partial Update, then it fails. The events in the event block are resolved
against the window index before the event block is applied atomically. Use normal
event blocks when you perform partial Updates.

Examples
Here are some sample code fragments for the variations on the three points described in
the previous section.

Create a partial Update datavar and push it onto the datavar vector.

// Create an empty partial-update datavar.
dfESPdatavar* dvp = new dfESPdatavar(dfESPdatavar::ESP_LOOKUP);
// Push partial-update datavar onto the vector in the appropriate
// location.
// Other partial-update datavars might also be allocated and pushed to the
// vector of datavars as required.
dvVECT.push_back(dvp); // this would be done for each field in the update
 event

Create a partial Update using partial-update and normal datavars pushed onto that
vector.

// Using the datavar vector partially defined above and schema,
// create event.
dfESPeventPtr eventPtr = new dfESPevent();
eventPtr->buildEvent(schemaPtr, dvVECT, dfESPeventcodes::eo_UPDATE,
dfESPeventcodes::ef_PARTIALUPDATE);

Define a partial update event using CSV fields where '^U' values represent partial-update
fields. Here you are explicitly showing '^U'. However, in actual text, you might see the
character representation of Ctrl-U because individual editors show control characters
in different ways.

Here, the event is an Update (due to 'u'), which is partial-update (due to 'p'), key value is
44001, "ibm" is the instrument that did not change. The instrument is included in the
field. The price is 100.23, which might have changed, and 3000 is the quantity, which
might have changed, so the last three of the fields are not updated.

p = new dfESPevent(schema_01,
(char *)"u,p,44001,ibm,100.23,3000,^U,^U,^U");

Marking Events as Partial-Update on Publish 247

Understanding Retention
Any source or copy window can set a retention policy. A window’s retention policy
governs how it introduces Deletes into the event stream. These Deletes work their way
along the data flow, recomputing the model along the way. Internally generated Deletes
are flagged with a retention flag, and all further window operations that are based on this
Delete are flagged.

For example, consider a source window with a sliding volume-based retention policy of
two. That source window always contains at most two events. When an Insert arrives
causing the source window to grow to three events, the event with the oldest
modification time is removed. A Delete for that event is executed.

Retention Type Description

time-based Retention is performed as a function of the age of events. The age of
an event is calculated as current time minus the last modification
time of the event. Time can be driven by the system time or by a time
field that is embedded in the event. A window with time-based
retention uses current time set by the arrival of an event.

volume-based Retention is based on a specified number of records. When the
volume increases beyond that specification, the oldest events are
removed.

Both time and volume-based retention can occur in one of two variants:

Retention
Variant Description

sliding Specifies a continuous process of deleting events. Think of the retention
window sliding continuously. For a volume-based sliding window, when
the specified threshold is hit, one delete is executed for each insert that
comes in.

jumping Specifies a window that completely clears its contents when a specified
threshold value is hit. Think of a ten-minute jumping window as one that
deletes its entire contents every 10 minutes.

A canonical set of events is a collapsed minimal set of events such that there is at most
one event per key. Multiple updates for the same key and insert + multiple updates for
the same key are collapsed. A window with retention generates a canonical set of
changes (events). Then it appends retention-generated Deletes to the end of the canonical
event set. At the end of the process, it forms the final output block.

Windows with retention produce output event blocks of the following form:
{<canonical output events>, <canonical retention deletes>}. All
other windows produce output blocks of the following form: {<canonical output
events>}.

248 Chapter 14 • Advanced Window Operations

Consider the following model:

Source Window
Schema: id*int32, symbol:string, quant: int32

Retention type: Volume (count=2)
Retention sub-type: Sliding

Aggregate Window
Schema: symbol*:string, sumQuant: int32

The following notation is used to denote events[<opcode>/<flags>:
f1, ... ,fn]

• Opcode

• i — insert

• d — delete

• ub — update block — any event marked as ub is always followed by an event
marked as d

• Flags

• n — normal

• r — retention generated

Suppose that the following events are streamed into the model:

Source In Source Out — Aggregate In Aggregate Out

[i/n: 1,ibm,10] [i/n: 1,ibm,10] [i/n: ibm,10]

Source In Source Out — Aggregate In Aggregate Out

[i/n: 2,ibm,11] [i/n: 2,ibm,11] [ub/n: ibm,21]

[d/n: ibm,10]

Source In Source Out — Aggregate In Aggregate Out

[i/n: 3,sas,100] [i/n: 3,sas,100] [i/n: sas,100]

[d/r: 1,ibm,10] [ub/r: ibm,11]

[d/r: ibm,21]

Source In Source Out — Aggregate In Aggregate Out

[i/n: 4,ibm,12] [i/n: 4,ibm,12] [ub/r: ibm,12]

[d/r: ibm,11]
[d/r: 2,ibm,11]

When you run in retention-tracking mode, retention and non-retention changes are
pulled through the system jointly. When the system processes a user event, the system
generates a retention Delete. Both the result of the user event and the result of the
retention Delete are pushed through the system. You can decide how to interpret the

Understanding Retention 249

result. In normal retention mode, these two events can be combined to a single event by
rendering its output event set canonical.

Source In Source Out — Aggregate In Aggregate Out

[i/n: 1,ibm,10] [i/n: 1,ibm,10] [i/n: ibm,10]

Source In Source Out — Aggregate In Aggregate Out

[i/n: 2,ibm,11] [i/n: 2,ibm,11] [ub/n: ibm,21]

[d/n: ibm,10]

Source In Source Out — Aggregate In Aggregate Out

[i/n: 3,sas,100] [i/n: 3,sas,100] [i/n: sas,100]

[d/r: 1,ibm,10] [ub/r: ibm,11]

[d/r: ibm,21]

Source In Source Out — Aggregate In Aggregate Out

[i/n: 4,ibm,12] [i/n: 4,ibm,12] [ub: ibm,23]

[d/n: ibm,11]

[d/r: 2,ibm,11] [ub/r: ibm,12]

[d/r: ibm,23]

Here, the output of the aggregate window, because of the last input event, is non-
canonical. In retention tracking mode, you can have two operations per key when the
input events contain a user input for the key and a retention event for the same key.

Note: A window with pulsed mode set always generates a canonical block of output
events. For the pulse to function as designed, the window buffers output events until
a certain threshold time. The output block is rendered canonical before it is sent.

Understanding Primary and Specialized Indexes

Overview
In order to process events with opcodes, each window must have a primary index. That
index enables the rapid retrieval, modification, or deletion of events in the window.

Windows can have other indexes that serve specialized purposes.

• source and copy windows have an additional index to aid in retention

• aggregate windows have an aggregation index to maintain the group structure

• Join windows have left and right local indexes along with optional secondary
indexes. These help avoid locking and maintain data consistency.

250 Chapter 14 • Advanced Window Operations

Table 14.1 Index Types Associated with Each Window Type

Window
Type

Primary
Index

Retention
Index

Aggregation
Index

Left Local
Index

Right Local
Index

Filter
Window

Compute
Window

Pattern
Window

Procedural
Window

Textcontext
Window

Yes

Source
Window

Copy
Window

Yes Yes

Aggregate
Window

Yes Yes

Join Window Yes Yes

Optional
secondary

Yes

Optional
secondary

The dfESPeventdepot object that is used to store windows supports six types of
primary indices: five are stateful, and one is not.

Fully Stateful Indexes
The following index types are fully stateful:

Index Type Description

pi_RBTREE Specifies red-black tree, logarithmic Insert, Deletes are O(log(n)) —
provides smooth latencies. Stores events in memory.

pi_HASH Specifies a typical open hash algorithm. Stores events in memory. In
general this index provides faster results than pi_RBTREE. Unless
properly sized, using this index might lead to latency spikes.

pi_CL_HASH Specifies a closed hash. This index provides faster results than
pi_HASH.

pi_FW_HASH Specifies a forward hash. This index creates a smaller memory
footprint than other hash indexes, but might yield poorer delete
performance.

pi_LN_HASH Specifies a linked hash. This index performs slightly more slowly than
other hash index and uses more memory than pi_CL_HASH.

Understanding Primary and Specialized Indexes 251

Index Type Description

pi_HLEVELDB On disk stateful index for large source or copy windows and for the left
or right local dimension index in a join. Can be used when there is no
retention, aggregation, or a need for a secondary index

For information about the closed hash, forward hash, and linked hash variants, see
“Miscellaneous Container Templates” at http://www.medownloads.com/download-
Miscellaneous-Container-Templates-147179.htm.

Events are absorbed, merged into the window’s index, and a canonical version of the
change to the index is passed to all output windows. Any window that uses a fully
stateful index has a size equal to the cardinality of the unique set of keys, unless a time
or size-based retention policy is enforced.

When no retention policy is specified, a window that uses one of the fully stateful
indices acts like a database table or materialized view. At any point, it contains the
canonical version of the event log. Because common events are reference-counted across
windows in a project, you should be careful that all retained events do not exceed
physical memory.

Use the Update and Delete opcodes for published events (as is the case with capital
market orders that have a lifecycle such as create, modify, and close order). However, for
events that are Insert-only, you must use window retention policies to keep the event set
bound below the amount of available physical memory.

Using the pi_HLEVELDB Primary Index with Big Dimension Tables

Overview
A common use case is to stream fact data into an engine and join it with dimension data
for further processing. This works well under the following two conditions:

• The model is stateless or is controlled by retention.

• The entire dimension table fits into memory.

However, when the dimension table consists of tens or hundreds of million rows, this
common use case becomes problematic. You can increase system memory to an extent,
after which price and hardware limitations affect the size of the data that can be
effectively processed.

With massive dimension tables, you can use the pi_HLEVELDB index to store events in
an on-disk store. This produces large on-disk event indexes with a correspondingly small
RAM footprint. Using this index type is helpful in the following circumstances:

• Throughput is measured in tens of thousands of events per second or more.

• The window is not implementing retention or aggregation.

• No secondary index is used.

Stateless Left Outer Join: One-Time Bulk Load with No-
Regeneration
Consider the following case. A stateless left outer join streams Insert-only data through
the left window (fact) and matches it against dimensional data on the right. It passes
Inserts out of the join. It uses the no-regenerates option of the join window, so
future inserts to the dimension table affect only future streaming fact events.

252 Chapter 14 • Advanced Window Operations

In this model, you first prime the dimension table with a large volume of Inserts, perhaps
hundreds of millions of rows. Specify that the right local index of the join have index
type pi_HLEVELDB. This stores the dimension data in the right local index in an on-disk
store. After the dimension data has been fully loaded, the fact stream can be started. Join
matches are made against the dimensional events in the on-disk store, using an MRU
memory cache for lookups and a filter to minimize disk seeks.

Figure 14.1 Streaming Data into a Join Window Using Two Different Stateful Index Types

Source Window
Fact (streaming)
Index: pi_EMPTY

Insert-only

Source Window
Dimension (lookup)
Index: pi_EMPTY

Insert-only

Left Local Index
Index: pi_EMPTY

Right Local Index
Index:

pi_HLEVELDB

Join Window
no-regenerates = true

Index: pi_EMPTY
Insert-only

The following C++ code fragment implements the model.

dfESPproject *project_01 = theEngine->newProject("project_01");
 project_01->setPubSub(dfESPproject::ps_MANUAL);

 dfESPcontquery *cq_01 = project_01->newContquery("cq_01");
 dfESPstring schema_01 =
 dfESPstring("S_ID*:string,S_Plan:string,S_gid:string,S_flag:string");

 dfESPwindow_source *Dim =
 cq_01->newWindow_source((dfESPstring)"Dim",
 dfESPindextypes::pi_EMPTY, schema_01);
 Dim->setInsertOnly();

 dfESPwindow_source *Fact = cq_01->newWindow_source((dfESPstring)"Fact",
 dfESPindextypes::pi_EMPTY, schema_01);
 Fact->setInsertOnly();

 dfESPwindow_join *Join =

Understanding Primary and Specialized Indexes 253

 cq_01->newWindow_join((dfESPstring)"Join", dfESPwindow_join::jt_LEFTOUTER,
 dfESPindextypes::pi_EMPTY, false, true);
 Join->setRightIndexType(dfESPindextypes::pi_HLEVELDB);

 Join->setJoinConditions("l_S_ID==r_S_ID");

 Join->addNonKeyFieldCalc("r_S_ID");
 Join->addNonKeyFieldCalc("l_S_Plan");
 Join->addNonKeyFieldCalc("r_S_Plan");

 Join->setFieldSignatures("r_S_ID:string,l_S_Plan:string,r_S_Plan:string");

 cq_01->addEdge(Fact, Join);
 cq_01->addEdge(Dim, Join);

Stateless Left Outer Join: Dimensional Updates with No-
Regeneration
Now suppose you want to periodically update or reload the dimension table in this
model. Thus, the dimensional data is no longer Insert only. To correctly resolve opcodes,
the source window into which the dimensional data flows must have a stateful index.

To do this, you modify the previous model to put the dimension source data in an on-
disk store. Store the following indexes to disk:

1. the primary index for the dimension source window

2. the right local index for the join

Again, the join is set to no-regenerates so that dimensional changes affect only new
data. Because the pi_HLEVELDB index type does not support a retention policy, the
dimension data should be naturally bounded. That is, it can encompass a very large
number of events, but not an infinite number.

254 Chapter 14 • Advanced Window Operations

Figure 14.2 Streaming Data into a Join Window When the Dimension Table Uses the
pi_HLEVELDB Index Type

Source Window
Fact (streaming)
Index: pi_EMPTY

Insert-only

Source Window
Dimension (lookup)

Index: pi_HLEVELDB

Left Local Index
Index: pi_EMPTY

Right Local Index
Index:

pi_HLEVELDB

Join Window
no-regenerates = true

Index: pi_EMPTY
Insert-only

The following XML code implements the model:

<project name='pr_01' pubsub='manual' threads='4' disk-store-path='/tmp/jones>
 <contqueries>
 <contquery name='cq_01'>
 <windows>
 <window-source name='Dim' index='pi_HLEVELDB'>
 <schema>
 <fields>
 <field name='S_ID' type='string' key='true' />
 <field name='S_Plan' type='string' />
 <field name='S_gid' type='string' />
 <field name='S_flag' type='string' />
 </fields>
 </schema>
 </window-source>
 <window-source name='Fact' index='pi_EMPTY' insert-only='true'>
 <schema>
 <fields>
 <field name='S_ID' type='string' key='true' />
 <field name='S_Plan' type='string' />
 <field name='S_gid' type='string' />
 <field name='S_flag' type='string' />
 </fields>
 </schema>

Understanding Primary and Specialized Indexes 255

 </window-source>
 <window-join name='join_w' index='pi_EMPTY'>
 <join type='leftouter' left='Fact' right='Dim'
 right-index='pi_HLEVELDB' no-regenerates='true'>
 <conditions>
 <fields left='S_ID' right='S_ID'/>
 </conditions>
 </join>
 <output>
 <field-selection name='r_S_ID' source='r_S_ID'/>
 <field-selection name='l_S_Plan' source='l_S_Plan'/>
 <field-selection name='r_S_Plan' source='r_S_Plan'/>
 </output>
 </window-join>
 </windows>
 <edges>
 <edge source='Fact' target='join_w'/>
 <edge source='Dim' target='join_w'/>
 </edges>
 </contquery>
 </contqueries>
 </project>

Non-Stateful Index
The non-stateful index is a source window that can be set to use the index type
pi_EMPTY. It acts as a pass-through for all incoming events. This index does not store
events.

The following restrictions apply to source windows that use the empty index type.

• No restrictions apply if the source window is set to "Insert only.". For more
information, see the setInsertOnly call in “dfESPwindow_source” on page 149.

• If the source window is not Insert-only, then it must be followed by a copy window
with a stateful index. This restriction enables the copy window to resolve Updates,
Upserts, and Deletes that require a previous window state. Otherwise, the Updates,
Upserts, and Deletes are not properly handled and passed to subsequent derived
windows farther down the model. As a result, the window cannot compute
incremental changes correctly.

Using empty indices and retention enables you to specify multiple retention policies
from common event streams coming in through a source window. The source window is

256 Chapter 14 • Advanced Window Operations

used as an absorption point and pass-through to the copy windows, as shown in the
following figure.

Figure 14.3 Copy Windows

Source Window
Copy Window
Sliding Retention
10 minutes

Copy Window
Sliding Retention
5 minutes

Copy Window
Sliding Retention
15 minutes

Persist and Restore Operations
SAS Event Stream Processing enables you to do the following:

• persist a complete model state to a file system

• restore a model from a persist directory that had been created by a previous persist
operation

• persist and restore an entire engine

• persist and restore a project

To create a persist object for a model, provide a pathname to the class constructor:
dfESPpersist(char *baseDir); The baseDir parameter can point to any valid
directory, including disks shared among multiple running event stream processors.

After providing a pathname, call either of these two public methods:

bool persist();
bool restore(bool dumpOnly=false);
// dumpOnly = true means do not restore, just walk and print info

The persist() method can be called at any time. Be aware that it is expensive. Event
block injection for all projects is suspended, all projects are quiesced, persist data is
gathered and written to disk, and all projects are restored to normal running state.

The restore() method should be invoked only before any projects have been started.
If the persist directory contains no persist data, the restore() call does nothing.

The persist operation is also supported by the C and Java publish/subscribe APIs. These
API functions require a host:port parameter to indicate the target engine.

The C publish/subscribe API method is as follows: int
C_dfESPpubsubPersistModel(char *hostportURL, const char
*persistPath)

Persist and Restore Operations 257

The Java publish/subscribe API method is as follows: boolean
persistModel(String hostportURL, String persistPath)

One application of the persist and restore feature is saving state across event stream
processor system maintenance. In this case, the model includes a call to the restore()
function described previously before starting any projects. To perform maintenance at a
later time on the running engine:

1. Pause all publish clients in a coordinated fashion.

2. Make one client execute the publish/subscribe persist API call described previously.

3. Bring the system down, perform maintenance, and bring the system back up.

4. Restart the event stream processor model, which executes the restore() function
and restores all windows to the states that were persisted in step 2.

5. Resume any publishing clients that were paused in step 1.

To persist an entire engine, use the following functions:

bool dfESPengine::persist(const char * path);

void dfESPengine::set_restorePath(const char *path);

The path that you specify for persist can be the same as the path that you specify for
set_restorePath.

To persist a project, use the following functions:

bool dfESPproject::persist(const char *path)

bool dfESPproject::restore(const char *path);

Start an engine and publish data into it before you persist it. It can be active and
receiving data when you persist it.

To persist an engine, call dfESPengine::persist(path);. The system does the
following:

1. pauses all incoming messages (suspends publish/subscribe)

2. finish processing any queued data

3. after all queued data has been processed, persist the engine state to the specified
directory, creating the directory if required

4. after the engine state is persisted, resume publish/subscribe and enable new data to
flow into the engine

To restore an engine, initialize it and call
dfESPengine::set_restorePath(path);. After the call to
dfESPengine::startProjects() is made, the entire engine state is restored.

To persist a project call dfESPproject::persist(path);. The call turns off
publish/subscribe, quiesces the system, persists the project, and then re-enables publish/
subscribe. The path specified for restore is usually the same as that for persist.

To restore the project, call dfESPproject::restore(path); before the project is
started. Then call dfESPengine::startProject(project);

258 Chapter 14 • Advanced Window Operations

Gathering and Saving Latency Measurements
The dfESPlatencyController class supports gathering and saving latency
measurements on an event stream processing model. Latencies are calculated by storing
64-bit microsecond granularity timestamps inside events that flow through windows
enabled for latency measurements.

In addition, latency statistics are calculated over fixed-size aggregations of latency
measurements. These measurements include average, minimum, maximum, and standard
deviation. The aggregation size is a configurable parameter. You can use an instance of
the latency controller to measure latencies between any source window and some
downstream window that an injected event flows through.

The latency controller enables you to specify an input file of event blocks. The rate at
which those events are injected into the source window. It buffers the complete input file
in memory before injecting to ensure that disk reads do not skew the requested inject
rate.

Specify an output text file that contains the measurement data. Each line of this text file
contains statistics that pertain to latencies gathered over a bucket of events. The number
of events in the bucket is the configured aggregation size. Lines contain statistics for the
next bucket of events to flow through the model, and so on.

Each line of the output text file consists of three tab-separated columns. From left to
right, these columns contain the following:

• the maximum latency in the bucket

• the minimum latency in the bucket

• the average latency in the bucket

You can configure the aggregation size to any value less than the total number of events.
A workable value is something large enough to get meaningful averages, yet small
enough to get several samples at different times during the run.

If publish/subscribe clients are involved, you can also modify publisher/subscriber code
or use the file/socket adapter to include network latencies as well.

To measure latencies inside the model only:

1. Include "int/dfESPlatencyController.h" in your model, and add an
instance of the dfESPlatencyController object to your main().

2. Call the following methods on your dfESPlatencyController object to
configure it:

Method Description

void set_playbackRate(int32_t r) Sets the requested inject
rate.

void set_bucketSize(int32_t bs) Sets the bucketSize
parameter previously
described.

Gathering and Saving Latency Measurements 259

Method Description

void set_maxEvents(int32_t me) Sets the maximum number
of events to inject.

void set_oFile(char *ofile) Sets the name of the output
file containing latency
statistics.

void set_iFile(char *ifile) Sets the name of the input
file containing binary event
block data.

3. Add a subscriber callback to the window where you would like the events to be
timestamped with an ending timestamp. Inside the callback add a call to this method
on your dfESPlatencyController object: void
record_output_events(dfESPeventblock *ob). This adds the ending
timestamp to all events in the event block.

4. After starting projects, call these methods on your dfESPlatencyController
object:

Method Description

void
set_injectPoint(dfESPwindow_source *s)

Sets the source window in
which you want events time
stamped with a beginning
timestamp.

void read_and_buffer() Reads the input event
blocks from the configured
input file and buffers them.

void playback_at_rate() Time stamps input events
and injects them into the
model at the configured
rate, up to the configured
number of events.

5. Quiesce the model and call this method on your
dfESPlatencyControllerobject: void generate_stats(). This writes the
latency statistics to the configured output file.

To measure model and network latencies by modifying your publish/subscribe clients:

1. In the model, call the dfESPengine setLatencyMode() function before
starting any projects.

2. In your publisher client application, immediately before calling
C_dfESPpublisherInject(), call C_dfESPlibrary_getMicroTS() to get
a current timestamp. Loop through all events in the event block and for each one call
C_dfESPevent_setMeta(event, 0, timestamp) to write the timestamp to
the event. This records the publish/subscribe inject timestamp to meta location 0.

260 Chapter 14 • Advanced Window Operations

3. The model inject and subscriber callback timestamps are recorded to meta locations
2 and 3 in all events automatically because latency mode is enabled in the engine.

4. Add code to the inject loop to implement a fixed inject rate. See the latency publish/
subscribe client example for sample rate limiting code.

5. In your subscriber client application, include "int/
dfESPlatencyController.h” and add an instance of the
dfESPlatencyController object.

6. Configure the latency controller bucketSize and playbackRate parameters as
described previously.

7. Pass your latency controller object as the context to
C_dfESPsubscriberStart() so that your subscriber callback has access to the
latency controller.

8. Make the subscriber callback pass the latency controller to
C_dfESPlatencyController_recordExtraOutputEvents(), along with
the event block. This records the publish/subscribe callback timestamp to meta
location 4.

9. When the subscriber client application has received all events, you can generate
statistics for latencies between any pair of the four timestamps recorded in each
event. First call C_dfESPlatencyController_setOFile() to set the output
file. Then write the statistics to the file by calling
C_dfESPlatencyController_generateStats() and passing the latency
controller and the two timestamps of interest. The list of possible timestamp pairs
and their time spans are as follows:

• (0, 2) – from inject by the publisher client to inject by the model

• (0, 3) – from inject by the publisher client to subscriber callback by the model

• (0, 4) – from inject by the publisher client to callback by the subscriber client
(full path)

• (2, 3) – from inject by the model to subscriber callback by the model

• (2, 4) – from inject by the model to callback by the subscriber client

• (3, 4) – from subscriber callback by the model to callback by the subscriber client

10. To generate further statistics for other pairs of timestamps, reset the output file and
call C_dfESPlatencyController_generateStats() again.

To measure model and network latencies by using the file/socket adapter, run the
publisher and subscriber adapters as normal but with these additional switches:

Publisher

—r rate Specifies the requested transmit rate in events per second.

-m maxevents Specifies the maximum number of events to publish.

-p Specifies to buffer all events prior to publishing.

-n Enables latency mode.

Gathering and Saving Latency Measurements 261

Subscriber

-r rate Specifies the requested transmit rate in events per second.

-a aggrsize Specifies the aggregation bucket size.

-n Enables latency mode.

The subscriber adapter gathers all four timestamps described earlier for the windows
specified in the respective publisher and subscriber adapter URLs. At the end of the run,
it writes the statistics data to files in the current directory. These files are named
"latency_transmit rate_high timestamp_low timestamp", where the high
and low timestamps correspond to the timestamp pairs listed earlier.

Enabling Finalized Callback
Some data structures are fully created when windows and edges are made, but are
finalized just before the project is started. These data structures include derived schema
and certain types of window indexes. The finalized callback function is called when all
data structures are completely initialized, but before any events start to flow into the
window. The finalized callback function can initialize some state or connection
information that is required by an application or XML model.

Enable finalized callback as follows:

• Use the following function in C++:
dfESPwindow::addFinalizeCallback(dfESPwindowCB_func cbf)

• Use the finalized-callback element in XML. Specify the name of the library
that contains the window callback function and the name of the function that the
window calls.

<finalized-callback name='library' function='fin_callback'>

For an example, see $DFESP_HOME/examples/xml/procedural_kmeans.

262 Chapter 14 • Advanced Window Operations

Chapter 15

Using the Publish/Subscribe API

Overview to the Publish/Subscribe API . 263

Understanding Publish/Subscribe API Versioning . 264

Using the C Publish/Subscribe API . 265
The C Publish/Subscribe API from the Engine’s Perspective 265
The C Publish/Subscribe API from the Client’s Perspective 266
Functions for the C Publish/Subscribe API . 267

Using the Java Publish/Subscribe API . 282
Overview to the Java Publish/Subscribe API . 282
Using High-Level Publish/Subscribe Methods . 283
Using Methods That Support Google Protocol Buffers . 285
Using User-supplied Callback Functions . 285
Using Alternative Transport Libraries for Java Clients . 286

Publish/Subscribe API Support for Google Protocol Buffers 288
Overview to Publish/Subscribe API Support for Google Protocol Buffers 288
Converting Nested and Repeated Fields in Protocol Buffer

Messages to an Event Block . 289
Converting Event Blocks to Protocol Buffer Messages . 290
Support for Transporting Google Protocol Buffers . 290

Publish/Subscribe API Support for JSON Messaging . 291
Overview . 291
Converting Nested Fields in JSON Messages to an Event Block 292
Converting Event Blocks to JSON Messages . 292
Support for Transporting JSON Messages . 293

Publish/Subscribe API Support for XML Messaging . 293

Overview to the Publish/Subscribe API
SAS Event Stream Processing provides publish/subscribe application programming
interfaces (APIs) for C and for Java. Use these APIs to do the following:

• publish event streams into a running event stream processor project source window

• subscribe to an event stream window, either from the same machine or from another
machine on the network

263

The APIs support TCP/IP networking. Thus, publish and subscribe applications can run
on any machine with network access to an event stream processing engine, or on the
engine platform itself. APIs are available on all architectures supported by SAS Event
Stream Processing.

The publish/subscribe APIs handle cross-platform usage. For example, you can
subscribe using the Java API to event streams in an engine that runs on Linux even
though the byte order Endianness is different.

You can also subscribe to an event stream so that it can be continuously loaded into a
database for persistence. In this case, you more likely would use an event stream
processor database connector or adapter.

Connectors are in-process classes that publish and subscribe to and from event stream
processing windows. For more information, see Chapter 16, “Using Connectors,” on
page 295 .

Adapters are stand-alone executable files that publish and subscribe, potentially over a
network. For more information, see Chapter 17, “Using Adapters,” on page 347.

Note: The APIs provide cross-platform connectivity and Endianness compatibility
between the application and other networked applications, clients, and data feeds.
The APIs are IPv4 compliant.

Understanding Publish/Subscribe API Versioning
Publish/subscribe API versioning enables the server side of a client connection request
to check the following information about the clients:

• protocol version

• command version (the release number)

It checks to determine whether this information matches that of the server or is forward
compatible with the server. Versioning enables SAS Event Stream Processing to support
forward compatibility for older publish/subscribe clients whenever feasible. When the
server is initialized, the version number is logged with the following message:

dfESPengine version %s completed initialization

When a publish/subscribe client successfully connects, the following message is logged:

Client negotiation successful, client version: %d, server version: %d,
continuous query: %s, window: %s, total active clients = %d

On the other hand, when the client connection is incompatible, the following message is
logged:

version mismatch; server is %d, client is %d

When the client version is unknown during the connection request (that is, when the
software release is earlier than 1.2), then the following message is logged:

Client version %d is unknown, and can be incompatible

You can read this log to determine the version number for the server and client.
However, the success messages (like the server message from server initialize) are
written using level information. Therefore, you see these only if you are logging
messages (including informational and higher).

264 Chapter 15 • Using the Publish/Subscribe API

Using the C Publish/Subscribe API

The C Publish/Subscribe API from the Engine’s Perspective
To enable publish/subscribe for the engine instance using the C++ Modeling API, you
must provide a port number to the pubsub_ENABLE() parameter in the
dfESPengine::initialize() call as follows:

dfESPengine *engine;
engine = dfESPengine::initialize(argc, argv, "engine",
pubsub_ENABLE(33335));

if (engine == NULL) {
 cerr <<"Error: dfESPengine::initialize() failed\n";
 return 1;
}

Clients can use that port number (in this example 33335) to establish publish/subscribe
connections. If publish/subscribe is not required, then use pubsub_DISABLE for that
parameter.

If publish/subscribe is required and clients must be authenticated, use
pubsub_ENABLE_OAUTH(port, clientId), where clientId is a CF UAA Oauth
server client ID. For more information, see <reference to Authentication chapter>

To initialize publish/subscribe capabilities for a project, project->setPubSub() is
called before calling engine->startProjects().

For example:

project->setPubSub(dfESPproject::ps_AUTO);
engine->startProjects();

This code opens a server listener socket on port 33335 to enable client subscribers and
publishers to connect to the engine application or server for publish/subscribe services.
After the connection request is made for publish/subscribe by a client (as described
below), an ephemeral port is returned, which the publish/subscribe API uses for this
connection.

In cases when you need to override ephemeral ports for a specific port (for security
purposes), specify project->setPubSub with a second parameter that is the
preferred port to be used for the actual connections to this project.

For example:

project->setPubSub(dfESPproject::ps_AUTO, 33444);

The first parameter of project->setPubSub() applies only to subscription services
and it specifies how windows in the project are enabled to support client subscriptions.
Specifying ps_AUTO enables clients to subscribe to all window output event streams in
the project.

Alternatively, you can enable windows manually by specifying ps_MANUAL. For non-
trivial projects, enable the specific windows of interest manually because automatically
enabling all windows has a noticeable impact on overall performance. You can also
specify ps_NONE, which disables subscribing for all windows.

Using the C Publish/Subscribe API 265

If you use ps_MANUAL in project->setPubSub() to specify manual enabling of
window subscribes, then use enableWindowSubs() for each desired window to
enable the subscribe as follows:

project->enableWindowSubs(dfESPwindow *w);

If, however, you specified ps_AUTO or ps_NONE in setPubSub(), then subsequent
calls to enableWindowSubs() are ignored and generate a warning.

Note: Clients can publish an event stream into any source window (and only source
windows) in a project that is currently running. All source windows are enabled for
publishing by default.

The C Publish/Subscribe API from the Client’s Perspective
Clients that subscribe from or publish to an engine’s event streams using the C API need
to first initialize services on the client (using C_dfESPpubsubInit()). Next, they
need to start a subscription using C_dfESPsubscriberStart() and publisher using
C_dfESPpublisherStart(), and then connect to the application or server using
C_dfESPpubsubConnect().

Clients that implement a publisher can then call C_dfESPpublisherInject() as
needed to publish event blocks into the source window specified in the URL passed to
C_dfESPpublisherStart().

The specifics of the client publish/subscribe API are as follows.

• Your client application must include the header file C_dfESPpubsubApi.h to provide
publisher and subscriber services. In addition to the API calls, this file also defines
the signatures of the user-supplied callback functions, of which there are currently
two: the subscribed event block handler and the publish/subscribe failure handler.

• The subscribed event block handler is used only by subscriber clients. It is called
when a new event block from the application or server arrives. After processing the
event block, the client is responsible for freeing it by calling
C_dfESPeventblock_destroy(). The signature of this user-defined callback is
as follows, where "eb" is the event block just read, "schema" is the schema of the
event for client processing, and ctx is an optional context object containing call
state:

typedef void (*C_dfESPsubscriberCB_func)(C_dfESPeventblock eb,
 C_dfESPschema schema, void *ctx);

• The second callback function, C_dfESPpubsubErrorCB_func(), is optional for
both subscriber and publisher clients. If supplied (that is, no NULL), it is called for
every occurrence of an abnormal event within the client services, such as an
unsolicited disconnect. This enables the client to handle and possibly recover from
publish/subscribe services errors. The signature for this callback function is below,
where the following is true:

• failure is either pubsubFail_APIFAIL, pubsubFail_THREADFAIL, or
pubsubFail_SERVERDISCONNECT

• code provides the specific code of the failure

• ctx is an optional context object containing call state

typedef void (*C_dfESPpubsubErrorCB_func)(C_dfESPpubsubFailures
 failure, C_dfESPpubsubFailureCodes code);

• The C_dfESPpubsubFailures and C_dfESPpubsubFailureCodes enums
are defined in C_dfESPpubsubFailures.h.

266 Chapter 15 • Using the Publish/Subscribe API

• A publisher client uses the C_dfESPpublisherInject() API function to
publish event blocks into a source window in the application or server. The event
block is injected into the source window running in the continuous query and project
specified in the URL passed to C_dfESPpublisherStart(). A client can publish
events to multiple windows in a project by calling C_dfESPpublisherStart()
once for each window and then passing the appropriate client object to
C_dfESPpublisherInject() as needed.

• A client can query the application or server at any time to discover currently running
windows, continuous queries, and projects in various granularities. This information
is returned to the client in the form of a list of strings that represent names, which
might subsequently be used to build URL strings to pass to
C_dfESPsubscriberStart() or C_dfESPpublisherStart(). See the
function description for a list of supported queries.

Functions for the C Publish/Subscribe API
The functions provided for client publish/subscribe in the publish/subscribe API are as
follows. You can use them for simple connections or for more robust and complex
connections with multiple connections or recovery handling by the client.

int C_dfESPpubsubInit(C_dfESPLoggingLevel level, const char *logConfigPath)

Parameters: level
the logging level

logConfigPath
the full pathname to the log configuration file

Return values: 1
success

0
failure — an error is written to the log

Note: This function initializes client publisher and subscriber services, and must be called (only
once) before making any other client calls, with the exception of
C_dfESPpubsubSetPubsubLib().

clientObjPtr C_dfESPpublisherStart(char *serverURL, C_dfESPpubsubErrorCB_func
errorCallbackFunction, void *ctx)

Parameters: serverURL
string representing the destination host, port, project, continuous query,
and window

serverURL format
"dfESP://host:port/project/contquery/window"

errorCallbackFunction
either NULL or a user-defined function pointer for handling client
service failures

ctx
optional context pointer for passing state into this call

Using the C Publish/Subscribe API 267

clientObjPtr C_dfESPpublisherStart(char *serverURL, C_dfESPpubsubErrorCB_func
errorCallbackFunction, void *ctx)

Return value: a pointer to a client object that is passed to all API functions described
below or NULL if there was a failure (error written to the log).

Note: This function validates and retains the connection parameters for a specific publisher
client connection.

clientObjPtr C_dfESPGDpublisherStart()

Parameters: Same parameters and return value as C_dfESPpublisherStart().
Additional required parameter: a Guaranteed Delivery callback function
pointer of type C_dfESPGDpublisherCB_func. Additional required
parameter: filename of this publisher’s guaranteed delivery configuration
file.

clientObjPtr C_dfESPsubscriberStart(char *serverURL, C_dfESPsubscriberCB_func
callbackFunction, C_dfESPpubsubErrorCB_ func errorCallbackFunction, void *ctx)

Parameters: serverURL
string representing the destination host, port, project, continuous query,
and window in the engine. Also specifies the client snapshot requirement
- if "true" the client receives the current snapshot state of the window
prior to any incremental updates.

Specifying the client collapse requirement is optional. By default, it is
false. When true, UPDATE_BLOCK events are converted to UPDATE
events in order to make subscriber output publishable.

serverURL format
"dfESP://host:port/project/contquery/window?
snapshot=true |false <?collapse=true | false><?
rmretdel=true | false>”

callbackFunction
a pointer to a user-defined function for handling received event blocks.
This function must call C_dfESPeventblock_destroy() to
free the event block.

errorCallbackFunction
either NULL or a user-defined function pointer for handling subscription
service failures

ctx
optional context pointer for parsing state into this call

Return value: a pointer to a client object that is passed to all API functions described
below, or NULL if there was a failure (error written to the log).

Note: This function validates and retains the connection parameters for a specific subscriber
client connection.

268 Chapter 15 • Using the Publish/Subscribe API

clientObjPtr C_dfESPGDsubscriberStart()

Parameters: Same parameters and return value as C_dfESPsubscriberStart().
Additional required parameter: filename of this subscriber’s guaranteed
delivery configuration file.

int C_dfESPpubsubConnect(clientObjPtr client)

Parameter: client
pointer to a client object returned by
C_dfESPsubscriberStart() or
C_dfESPpublisherStart() or
C_dfESPGDsubscriberStart() or
C_dfESPGDpublisherStart()

Return values: 1
success

0
failure — error written to the log

Note: This function attempts to establish a connection with the application or server.

int C_dfESPpubsubDisconnect(clientObjPtr client, int block)

Parameters: client
pointer to a client object returned by
C_dfESPsubscriberStart() or
C_dfESPpublisherStart() or
C_dfESPGDsubscriberStart() or
C_dfESPGDpublisherStart()

block
set to 1 to wait for all queued events to be processed, else 0

Return values: 1
success

0
failure — error written to the log

Note: This function closes the connection associated with the passed client object.

int C_dfESPpubsubStop(clientObjPtr client, int block)

Parameters: client
pointer to a client object returned by
C_dfESPsubscriberStart() or
C_dfESPpublisherStart() or
C_dfESPGDsubscriberStart() or
C_dfESPGDpublisherStart()

block
set to 1 to wait for all queued events to be processed, else 0

Using the C Publish/Subscribe API 269

int C_dfESPpubsubStop(clientObjPtr client, int block)

Return values: 1
success

0
failure — error written to the log

Note: This function stops the client session and removes the passed client object.

int C_dfESPpublisherInject(clientObjPtr client, C_dfESPeventblock eventBlock)

Parameters: client
pointer to a client object returned by
C_dfESPpublisherStart()or
C_dfESPGDsubscriberStart()

eventBlock
the event block to inject into the engine. The block is injected into the
source window, continuous query, and project associated with the passed
client object.

Return values: 1
success

0
failure — error written to the log

Note: This function implements the client publisher function by publishing events into the
engine. Event blocks can be built using other additional functions provided in the event stream
processor objects C API.

C_dfESPstringV C_dfESPpubsubQueryMeta(char *queryURL)

Parameter: queryURL
string representing the query to be posted to the engine.

Return
value:

a vector of strings representing the list of names comprising the response to the
query, or NULL if there was a failure (error written to the log). The end of the list
is denoted by an empty string. The caller is responsible for freeing the vector by
calling C_dfESPstringV_free().

Note: This function implements a general event stream processor metadata query mechanism.
This mechanism enables a client to discover projects, continuous queries, windows, window
schema, and window edges currently running in the engine. This mechanism has no
dependencies or interaction with any other activity performed by the client. The function opens
an independent socket to send the query and closes the socket upon receiving the query reply.

Supported formats of queryURL

"dfESP://host:port?get=projects" returns names of
currently running
projects

270 Chapter 15 • Using the Publish/Subscribe API

Supported formats of queryURL

“dfESP://host:port?get=projects_pubsubonly” returns names of
currently running
projects with
publish/subscribe
enabled

"dfESP://host:port?get=queries" returns names of
continuous queries
in currently running
projects

"dfESP://host:port/project?
get=windows_sourceonly"

returns names of
source windows in
the specified project,
if the project is
running

"dfESP://host:port/project?
get=windows_derivedonly"

returns names of
derived windows in
the specified project,
if the project is
running

"dfESP://host:port?get=queries_pubsubonly" returns names of
continuous queries
containing publish/
subscribe enabled
windows in
currently running
projects

"dfESP://host:port?get=windows" returns names of
windows in
currently running
projects

"dfESP://host:port?get=windows_pubsubonly" returns names of
publish/subscribe
enabled windows in
currently running
projects

"dfESP://host:port/project/contquery?
get=windows_sourceonly"

returns names of
source windows in
the specified
continuous query
and project, if the
project is running

"dfESP://host:port/project/contquery?
get=windows_derivedonly"

returns names of
derived windows in
the specified
continuous query
and project, if the
project is running

Using the C Publish/Subscribe API 271

Supported formats of queryURL

"dfESP://host:port/project?get=windows" returns names of
windows in the
specified project, if
running

"dfESP://host:port/project?
get=windows_pubsubonly"

returns names of
publish/subscribe-
enabled windows in
the specified project,
if running

"dfESP://host:port/project?get=queries" returns names of
continuous queries
in the specified
project, if running

"dfESP://host:port/project?
get=queries_pubsubonly"

returns names of
continuous queries
containing publish/
subscribe-enabled
windows in the
specified project, if
running

"dfESP://host:port/project/contquery?
get=windows"

returns names of
windows in the
specified continuous
query and project, if
running

"dfESP://host:port/project/contquery?
get=windows_pubsubonly"

returns names of
publish/subscribe-
enabled windows in
the specified
continuous query
and project, if
running

"dfESP://host:port/project/contquery/window?
get=schema"

returns a single
string that is the
serialized version of
the window schema

"dfESP://host:port/project/contquery/window?
get=edges"

returns the names of
all the window’s
edges

"dfESP://host:port/project/contquery/window?
get=rowcount"

returns the number
of rows currently in
the window

272 Chapter 15 • Using the Publish/Subscribe API

C_dfESPstringV C_dfESPpubsubGetModel(char *queryURL)

Parameter: queryURL
string representing the query to be posted to engine.

Supported formats of queryURL are as follows:

• "dfESP://host:port" – returns names of all windows in the
model and their edges

• "dfESP://host:port/project" – returns names of all
windows in the project and their edges

• "dfESP://host:port/project/contquery" – returns
names of all windows in the continuous query and their edges

Return value: A vector of strings representing the response to the query, or NULL if there
was a failure (error written to the log). The format of each string is “project/
query/window: edge1, edge2, ...”. The end of the list is denoted by an empty
string. The caller is responsible for freeing the vector by calling
C_dfESPstringV_free().

Note: This function allows a client to discover an engine by returning the complete set of
windows in the model or project or continuous query, along with the window’s edges. It has no
dependencies or interaction with any other activity performed by the client. It opens an
independent socket to send the query and closes the socket upon receiving the query reply.

void C_dfESPpubsubShutdown()

Shutdown publish/subscribe services

int C_dfESPpubsubPersistModel(char *hostportURL, const char *persistPath)

Parameters
:

hostportURL
string in the form “dfESP://host:port”

persistpath
the absolute or relative pathname for the persist file on the target platform

Return
values:

1
success

0
failure — error written to the log

Note: This function instructs the engine at the hostportURL to persist its current state to disk. It
has no dependencies or interaction with any other activity performed by the client. It opens an
independent socket to send the request and closes the socket upon receiving the request return
code.

Using the C Publish/Subscribe API 273

int C_dfESPpubsubQuiesceProject(char *projectURL, clientObjPtr client)

Parameters
:

projectURL
string in the form "dfESP://host:port/project"

client
optional pointer to a client object returned by
C_dfESPsubscriberStart() or C_dfESPpublisherStart()
or C_dfESPGDsubscriberStart() or
C_dfESPGDpublisherStart(). If not null, wait for the specified
client's queued events to be processed before quiescing the project.

Return
values:

1
success

0
failure — error written to the log.

Note: This function instructs the engine at the projectURL to quiesce the project in
projectURL. This call is synchronous, meaning that when it returns the project has been
quiesced.

int C_dfESPsubscriberMaxQueueSize(char *serverURL, int maxSize, int block)

Parameters: serverURL
String for the server URL in one of the following forms:

• "dfESP://host:port"

• "dfESP://host:port/project"

• "dfESP://host:port/project/contquery"

• "dfESP://host:port/project/contquery/
window"

maxsize
the maximum number of event blocks that can be queued for any single
subscriber to a window in the serverURL

block
set to 1 to wait for queue size to fall below maxSize, else disconnect the
client

Return values: 1
success

0
failure - error written to the log

Note: Use this function to configure the maximum size of all queues used to enqueue event
blocks sent to subscribers in a project, query, or window. Use it to limit the amount of memory
consumed by these queues. The block parameter specifies the behavior when the maximum is
hit.

274 Chapter 15 • Using the Publish/Subscribe API

int C_dfESPpubsubSetPubsubLib(C_dfESPpsLib psLib)

Parameters: psLib
Number representing the client/server transport

Supported values of psLib are as follows:

• ESP_PSLIB_NATIVE (default)

• ESP_PSLIB_SOLACE — In this mode a client configuration file named
solace.cfg must be present in the current directory to provide appliance
connectivity parameters.

• ESP_PSLIB_TERVELA — In this mode, a client configuration file
named client.config must be present in the current directory to
provide appliance connectivity parameters.

• ESP_PSLIB_RABBITMQ — In this mode, a client configuration
filename rabbitmq.cfg must be present in the current directory to
provide Rabbit MQ server connectivity parameters.

Solace
configuration
file format:

solace
{
SESSION_HOST = "10.37.150.244:55555"
SESSION_USERNAME = "pub1"
SESSION_PASSWORD = "pub1"
SESSION_VPN_NAME = "SAS"
SESSION_RECONNECT_RETRIES = "3"
SESSION_REAPPLY_SUBSCRIPTIONS = true
SESSION_TOPIC_DISPATCH = true
}
sas
{
buspersistence = false
queuename = "myqueue"
protobuf = false
protofile = "./GpbHistSimFactory.proto"
protomsg = "GbpTrade"
json = false
}

Tervela
configuration
file format:

USERNAME esp
PASSWORD esp
PRIMARY_TMX 10.37.8.175
LOGIN_TIMEOUT 45000
GD_CONTEXT_NAME tvaIF
GD_MAX_OUT 10000

Using the C Publish/Subscribe API 275

int C_dfESPpubsubSetPubsubLib(C_dfESPpsLib psLib)

RabbitMQ
configuration
file format:

rabbitmq
{
host = "my.machine.com"
port = "5672"
exchange = "SAS"
userid = "guest"
password = "guest"
}

sas
{
buspersistence = false
queuename = "subpersist"
protobuf = false
protofile = "./GpbHistSimFactory.proto"
protomsg = "GpbTrade"
json = false
noreplay = false
noautoack = false
}

Note: The buspersistence and queuename parameters mean
different things for subscribers or publishers of Rabbit MQ messages. For a
publisher, queuename is always ignored. If buspersistence =
false, messages are sent in non-persistent delivery mode. Otherwise,
delivery mode is persistent. For a subscriber, queuename is always used
when creating the receive queue. If buspersistence = false, all
queues and exchanges created by the client are non-durable and auto-delete.
If buspersistence = true, all exchanges and queues are durable
and not auto-delete. The noreplay parameter is false by default. When
set to true, messages received from Rabbit MQ are acknowledged even
when buspersistence is enabled. By default, the noautoack
parameter is set to false. When set to true, messages received from
Rabbit MQ are explicitly acknowledged instead of implicitly acknowledged
through the Rabbit MQ autoack. This means that any errors detected in
received message processing suppress the ack and leave the message on
the Rabbit MQ queue.

Return values: 1
success

0
failure

276 Chapter 15 • Using the Publish/Subscribe API

int C_dfESPpubsubSetPubsubLib(C_dfESPpsLib psLib)

Note: This function call is optional, but if called it must be called before calling
C_dfESPpubsubInit(). It modifies the transport used between the client and the engine
from the default peer-to-peer TCP/IP based socket connection that uses the ESP publish/
subscribe protocol. Instead, you can specify ESP_PSLIB_SOLACE, ESP_PSLIB_TERVELA,
or ESP_PSLIB_RABBITMQ to indicate that the client’s TCP/IP peer is a Solace appliance, a
Tervela appliance, or a Rabbit MQ server. This mode requires that the engine runs a Solace,
Tervela, or Rabbit MQ connector to provide the corresponding inverse client to the appliance.
The topic names used by the appliance are coordinated by the publish/subscribe client and
connector to correctly route event blocks through the appliance.

Note: When using the Solace, Tervela, or Rabbit MQ transports, the following publish/
subscribe API functions are not supported:

C_dfESPpubsubGetModel()
C_dfESPGDpublisherStart()
C_dfESPGDpublisherGetID()
C_dfESPGDsubscriberStart()
C_dfESPGDsubscriberAck()
C_dfESPpubsubSetBufferSize()
C_dfESPpubsubQuiesceProject()
C_dfESPsubscriberMaxQueueSize()
C_dfESPpubsubPingHostPort()

C_dfESPGDsubscriberAck(clientObjPtr client, CdfESPeventblock eventblock)

Parameters: • client pointer to a client object returned by
C_dfESPGDsubscriberStart()

• eventBlock pointer to the event block being acknowledged back to the
publisher. The event block must not be freed before this function
returns.

Return values: • 1 = success

• 0 = failure

C_dfESPGDpublisherCB_func()

Parameters: Signature of the guaranteed delivery publisher callback function passed to
C_dfESPGDpublisherStart(). This function is invoked by the
API to return the guaranteed delivery status of a published event block back
to the publisher.

• Parameter 1: READY or ACK or NACK (acknowledged or not
acknowledged).

• Parameter 2: 64-bit event block ID

• Parameter 3: the user context pointer passed to
C_dfESPGDpublisherStart()

Return value: Void

Using the C Publish/Subscribe API 277

C_dfESPGDpublisherGetID()

Return value: 64-bit event block ID. Might be called by a publisher to obtain sequentially
unique IDs to be written to event blocks before injecting them to a
guaranteed delivery-enabled publish client.

int C_dfESPpubsubSetBufferSize(clientObjPtr client, int32_t mbytes)

Parameters: client
pointer to a client object returned by
C_dfESPsubscriberStart() ,C_dfESPpublisherStar
t() , C_dfESPGDsubscriberStart(), or
C_dfESPGDpublisherStart()

mbytes
the read and write buffer size, in units of 1MB

Return values: 1
success

0
failure

Note: This function call is optional, but if called it must be called after
C_dfESPsubscriberStart(), C_dfESPpublisherStart(),
C_dfESPGDsubscriberStart(), or C_dfESPGDpublisherStart() and before
C_dfESPpubsubConnect(). It modifies the size of the buffers used for socket Read and
Write operations. By default this size is 16MB

int C_dfESPpubsubPingHostPort(char *serverURL)

Parameters: serverURL
A string with the format "dfESP://host:port"

Return values: 1
port is open and it is a publish/subscribe port

0
port is not open or is not a publish/subscribe port

Note: This function pings a running engine to determine whether the specified port is open. It
also exchanges and verifies a magic number in order to confirm that the open port is a publish/
subscribe port.

int C_dfESPpubsubSetTokenLocation(char *tokenLocation)

Parameters: tokenLocation

full path and filename of the file that contains the token

278 Chapter 15 • Using the Publish/Subscribe API

int C_dfESPpubsubSetTokenLocation(char *tokenLocation)

Return values: 1
success

0
failure

Note: This function sets the location of the file in the local file system that contains the OAuth
token that is required for authentication by the publish/subscribe server.

protobuffObjPtr C_dfESPpubsubInitProtobuff(char *protoFile, char *msgName,
C_dfESPschema C_schema, char *dateFormat, C_dfESPeventcodes defaultOpcode)

Parameters: protoFile
Path to the Google .proto file that contains the message definition.

msgName
Name of the target message definition in the Google .proto file.

C_schema
Pointer to the window schema.

dateFormat
Date format for CSV conversions. Set to null for the default format.

defaultOpcode
The opcode to insert into events that are built from a serialized protobuf.

Return value: A pointer to a protobuff object, which is passed to all other
protobuff API functions. NULL when there is a failure.

C_dfESPeventblock C_dfESPprotobuffToEb(protobuffObjPtr protobuff, void
*serializedProtobuff)

Parameters: protobuff
pointer to the object created by
C_dfESPpubsubInitProtobuff()

serializedProtobuff
pointer to serialized protobuff received on a socket

Return value: Event block pointer

void *C_dfESPebToProtobuff(protobuffObjPtr protobuff, C_dfESPeventblock C_eb,
int32_t index)

Parameters: protobuff
pointer to the object created by
C_dfESPpubsubInitProtobuff()

C_eb
event block pointer

index
index of the event to convert in the event block

Using the C Publish/Subscribe API 279

void *C_dfESPebToProtobuff(protobuffObjPtr protobuff, C_dfESPeventblock C_eb,
int32_t index)

Return value: pointer to serialized protobuff

void C_dfESPdestroyProtobuff(protobuffObjPtr protobuff, void *serializedProtobuff)

Parameters: protobuff
pointer to the object created by
C_dfESPpubsubInitProtobuff()

serializedProtobuff
pointer to serialized protobuff received on a socket

jsonObjPtr C_dfESPpubsubInitJson(C_dfESPschema C_schema, char *dateFormat
C_dfESPeventcodes defaultOpcode)

Parameters: C_schema
pointer to the window schema

dateFormat
Date format for CSV conversions. Set to null for the default format.

defaultOpcode
the opcode to insert into events that are built from JSON that contain no
opcode field

Return value: A pointer to a JSON object, which is passed to all other JSON API
functions. NULL when there is a failure.

C_dfESPeventblock C_dfESPjsonToEb(jsonObjPtr json, void *serializedJson, int32_t
maxEvents)

Parameters: json
pointer to the object created by C_dfESPpubsubInitJson()

serializedJson
pointer to a serialized JSON received on a socket

maxEvents
limit the number of events created to this value. A value of 0 means no
limit.

Return value: event block pointer

void *C_dfESPebToJson(jsonObjPtr json, C_dfESPeventblock C_eb)

Parameters: json
pointer to the object created by C_dfESPpubsubInitJson()

C_eb
event block pointer

Return value: pointer to a serialized JSON

280 Chapter 15 • Using the Publish/Subscribe API

C_dfESPeventblockV C_dfESPxmlToEb(xmlObjPtr xml, void *serializedXml, int32_t
maxEvents)

Parameters: xml
pointer to the object created by
C_dfESPpubsubInitXml()

serializedXml
pointer to serialized XML received on a
socket

maxEvents
the maximum number of events processed.
A value of 0 means no limit.

Return value: event block pointer

xmlObjPtr C_dfESPpubsubInitXml(C_dfESPschema C_schema, char *dateFormat,
C_dfESPeventcodes defaultOpcode)

Parameters: C_schema
pointer to the window schema

dateFormat
date format for CSV conversions. Set to
null for the default format.

defaultOpcode
the opcode to insert into events that are
build from XML that contain no opcode
field

Return value: A pointer to an XML object. This pointer is
passed to all other XML API functions. The
value is null when there is a failure.

void *C_dfESPebToXml(xmlObjPtr xml, C_dfESPeventblock C_eb)

Parameters: xml
pointer to the object created by
C_dfESPpubsubInitXml()

C_eb
event block pointer

Return value: pointer to serialized XML

A C library provides a set of functions to enable client developers to analyze and
manipulate the event stream processing objects from the application or server. These
functions are a set of C wrappers around a small subset of the methods provided in the C
++ Modeling API. With these wrappers, client developers can use C rather than C++.
Examples of these objects are events, event blocks, and schemas. A small sampling of

Using the C Publish/Subscribe API 281

these calls follows. For the full set of calls, see the API reference documentation
available at $DFESP HOME/doc/html.

To get the size of
an event block:

C_ESP_int32_t eventCnt = C_dfESPeventblock_getSize(eb);

To extract an event
from an event
block:

C_dfESPevent ev = C_dfESPeventblock_getEvent(eb, eventIndx);

To create an object
(a string
representation of
schema in this
case):

C_ESP_utf8str_t schemaCSV = C_dfESPschema_serialize(schema);

To free an object (a
vector of strings in
this case):

C_dfESPstringV_free(metaVector);

Using the Java Publish/Subscribe API

Overview to the Java Publish/Subscribe API
SAS Event Stream Processing and its C publish/subscribe API use the SAS logging
library, whereas the Java publish/subscribe API uses the Java logging APIs in the
java.util.logging package. Please refer to that package for log levels and specifics
about Java logging.

The Java publish/subscribe API is provided in two packages. These packages define the
following public interfaces:

• com.sas.esp.api.pubsub

• com.sas.esp.api.pubsub.clientHandler

• com.sas.esp.api.pubsub.clientCallbacks

• com.sas.esp.api.server

• com.sas.esp.api.server.datavar

• com.sas.esp.api.server.event

• com.sas.esp.api.server.eventblock

• com.sas.esp.api.server.library

• com.sas.esp.api.server.schema

A client can query the Event Stream Processor application or server at any time to
discover currently running windows, continuous queries, and projects in various
granularities. This information is returned to the client in the form of a list of strings that
represent names. This list can be used to build URL strings to pass to
subscriberStart() or publisherStart().

282 Chapter 15 • Using the Publish/Subscribe API

The parameters and usage for the Java publish/subscribe API are the same as for the
equivalent calls for the C publish/subscribe API.

The C API references and Java interface references are available at
$DFESP_HOME/doc/html.

Using High-Level Publish/Subscribe Methods
The following high-level publish/subscribe methods are defined in the following
interface reference: com.sas.esp.api.pubsub.clientHandler.

Method Description

boolean init(Level level) Initialize publish/subscribe services

dfESPclient publisherStart(String
serverURL, clientCallbacks
userCallbacks, Object ctx)

Start a publisher.

dfESPclient subscriberStart(String
serverURL, clientCallbacks
userCallbacks, Object ctx)

Start a subscriber

boolean connect(dfESPclient client) Connect to the Event Stream
Processor application or server

boolean
publisherInject((dfESPclient
client, dfESPeventblock eventblock)

Publish event blocks

ArrayList< String > queryMeta (String queryURL) Query model metadata

ArrayList< String > getModel(String queryURL) Query model windows and their
edges

boolean disconnect (dfESPclient
client, boolean block)

Disconnect from the event stream
processor

boolean stop (dfESPclient client,
boolean block)

Stop a subscriber or publisher

void shutdown () Shutdown publish/subscribe
services

boolean setBufferSize(dfESPclient
client, int mbytes)

Change the default socket read and
write buffer size

dfESPclient GDsubscriberStart
(String serverURL, clientCallbacks
userCallbacks, Object ctx, String
configFile)

Start a guaranteed delivery
subscriber

Using the Java Publish/Subscribe API 283

Method Description

dfESPclient GDpublisherStart
(String serverURL, clientCallbacks
userCallbacks, Object ctx, String
configFile)

Start a guaranteed delivery publisher

long GDpublisherGetID() Get a sequentially unique ID to
write to an event block to be
published using guaranteed delivery

boolean GDsubscriberAck(dfESPclient
client, dfESPeventblock eventblock)

Trigger a guaranteed delivery
acknowledgment

boolean persistModel(String
hostportURL, String persistPath)

Instruct a running engine to persist
its current state to disk

boolean quiesceProject(String
projectURL, dfESPclient client)

Instruct a running engine to quiesce
a specific project in the model.

boolean
subscriberMaxQueueSize(String
serverURL, int maxSize, boolean
block)

Configure the maximum size of the
queues in the event stream
processing server that are used to
enqueue event blocks sent to
subscribers. Set block to 1 to wait
for queue size to fall
belowmaxSize, else disconnect
the client.

boolean pingHostPort(String
hostportURL)

Pings a running engine to see
whether the specified publish/
subscribe port is open. Also,
exchanges and verifies a magic
number in order to confirm that the
open port is a publish/subscribe
port.

boolean setTokenLocation(String
tokenLocation)

Sets the location of the file in the
local file system that contains the
OAuth token required for
authentication by the publish/
subscribe server.

For more information, see $DFESP_HOME/doc/html/index.html. Search the
Classes page for client handler.

284 Chapter 15 • Using the Publish/Subscribe API

Using Methods That Support Google Protocol Buffers
The following methods support Google Protocol Buffers. They are defined in this
interface reference: com.sas.esp.api.pubsub.protobufInterface.

Method Description

boolean init(String
fileDescriptorSet, String
msgName, dfESPschema schema,
EventOpcodes defaultOpcode)

Initialize the library that supports Google
Protocol Buffers.

dfESPeventblock
protobufToEb(byte[]
serializedProtobuf)

Convert a protobuf message to an event
block.

byte[]
ebToProtobuf(dfESPeventblock
eb, int index)

Convert an event in an event block to a
protobuf message.

For more information, see “Publish/Subscribe API Support for Google Protocol Buffers”
on page 288.

Using User-supplied Callback Functions
The com.sas.esp.api.pubsub.clientCallbacks interface reference defines
the signatures of the user-supplied callback functions. There currently are three
functions:

• the subscribed event block handler

• the publish/subscribe failure handler

• the guaranteed delivery ACK-NACK handler

The subscribed event block handler is used only by subscriber clients. It is called when a
new event block from the application or server arrives. After processing the event block,
the client is responsible for freeing it by calling eventblock_destroy(). The
signature of this user-defined callback is as follows where "eventBlock" is the event
block just read, "schema" is the schema of the event for client processing, and “ctx” is
an optional context pointer for maintaining call state:

void com.sas.esp.api.pubsub.clientCallbacks.dfESPsubscriberCB_func
 (dfESPeventblock eventBlock, dfESPschema schema, Object ctx)

The second callback function for publish/subscribe client error handling is optional for
both subscriber and publisher clients. If supplied (that is, not NULL), it is called for
every occurrence of an abnormal event within the client services, such as an unsolicited
disconnect. This enables the client to gracefully handle and possibly recover from
publish/subscribe services errors. The signature for this callback function is below where

• failure is either pubsubFail_APIFAIL, pubsubFail_THREADFAIL, or
pubsubFail_SERVERDISCONNECT.

• code provides the specific code of the failure.

• ctx is an optional context pointer to a state data structure.

Using the Java Publish/Subscribe API 285

void com.sas.esp.api.pubsub.clientCallbacks.dfESPpubsubErrorCB_func
 (clientFailures failure, clientFailureCodes code, Object ctx)

clientFailures and client FailureCodes are defined in interface references
com.sas.esp.api.pubsub.clientFailures and
com.sas.esp.api.pubsub.clientFailureCodes.

The guaranteed delivery ACK-NACK handler is invoked to provide the status of a
specific event block, or to notify the publisher that all subscribers are connected and
publishing can begin. The signature for this callback function is as follows:

void com.sas.esp.api.pubsub.clientCallbacks.dfESPGDpublisherCB_func
 (clientGDStatus eventBlockStatus, long eventBlockID, Object ctx)

where

• eventBlockStatus is either ESP_GD_READY, ESP_GD_ACK, or
ESP_GD_NACK

• eventBlockID is the ID written to the event block prior to publishing

• ctx is an optional context pointer to a state data structure

Using Alternative Transport Libraries for Java Clients
Alternative transport libraries enable a Java publish/subscribe client application to send
and receive event blocks through a mechanism other than a direct TCP/IP connection to
the client:

• Rabbit MQ Java libraries enable sending and receiving through the Rabbit MQ
server.

• Solace Java libraries enable sending and receiving through the Solace appliance.

• Tervela Java libraries enable sending and receiving through the Tervela appliance.

These libraries enable the Java equivalent of the C publish/subscribe API method,
substituting a Solace transport or a Tervela transport. When the engine is configured for
1 + N-Way Failover using Rabbit MQ, Solace, or Tervela, Java publish/subscribe clients
must use the corresponding client library to guarantee successful failover.

To substitute one of these libraries in your Java publish/subscribe client application,
insert the corresponding JAR filename in front of dfx-esp-api.jar in your
classpath, as shown here:

• For Rabbit MQ, the JAR file is dfx-esp-rabbitmq-api.jar.

• For Solace, the JAR file is dfx-esp-solace-api.jar.

• For Tervela, the JAR file is dfx-esp-tervela-api.jar.

If you are using the Rabbit MQ library, you must also install the native Rabbit MQ Java
client libraries (rabbitmq-client.jar) on your system. Obtain them at http://
www.rabbitmq.com/java-client.html. Then add rabbitmq-client.jar to your
classpath.

Your current working directory must also include a corresponding configuration file as
shown here:

• For RabbitMQ this file must be named rabbitmq.cfg.

• For Solace, it must be named solace.cfg.

• For Tervela, it must be named client.config.

286 Chapter 15 • Using the Publish/Subscribe API

Here is a sample configuration file for RabbitMQ:

{
rabbitmq =
{
host = "my.machine.com";
port = "5672";
exchange = "SAS";
userid = "guest";
password = "guest";
}
sas =
{
buspersistence = false;
queuename = "subpersist";
protobuf = false;
protofile = "./GpbHistSimFactory.proto";
protomsg = "GpbTrade";
noreplay = false;
}
}

The buspersistence and queuename parameters mean different things for
publishers and subscribers.

• For a publisher, queuename is always ignored. If buspersistence = false,
messages are sent in non-persistent delivery mode. Otherwise, delivery mode is
persistent.

• For a subscriber, buspersistence = false means that all queues and
exchanges created by the client are non-durable and auto-delete and that the
queuename parameter is ignored. If buspersistence = true, all exchanges
and queues are durable and not auto-delete and the queuename in the durable
receive queue is fixed.

The noreplay parameter is false by default. When set to true, received messages are
acknowledged even when buspersistence is enabled.

Here is a sample configuration file for Solace:

{
solace =
{
session = ("host", "10.37.150.244:55555",
"username", "sub1", "password",
"sub1", "vpn_name", "SAS");
context = ("CONTEXT_TIME_RES_MS", "50",
"CONTEXT_CREATE_THREAD", "1");
}
sas=
{
buspersistence = false;
queuename = "myqueue";
protobuf = false;
protofile = "./GpbHistSimFactory.proto";
protomsg = "GpbTrade";
}
}

Using the Java Publish/Subscribe API 287

Here is a sample configuration file for Tervela:

USERNAME esp
PASSWORD esp
PRIMARY_TMX 10.37.8.175
LOGIN_TIMEOUT 45000
GD_CONTEXT_NAME tvaIF
GD_MAX_OUT 10000

Publish/Subscribe API Support for Google
Protocol Buffers

Overview to Publish/Subscribe API Support for Google Protocol
Buffers

SAS Event Stream Processing provides a library to support Google Protocol Buffers.
This library provides conversion methods between an event block in binary format and a
serialized Google protocol buffer (protobuf).

To exchange a protobuf with an event stream processing server, a publish/subscribe
client using the standard publish/subscribe API can call
C_dfESPpubsubInitProtobuff() to load the library that supports Google Protocol
Buffers. Then a publisher client with source data in protobuf format can call
C_dfESPprotobuffToEb() to create event blocks in binary format before calling
C_dfESPpublisherInject(). Similarly, a subscriber client can convert a received
events block to a protobuf by calling C_dfESPebToProtobuff() before passing it
to a protobuf handler.

Note: The server side of an event stream processing publish/subscribe connection does
not support Google Protocol Buffers. It continues to send and receive event blocks in
binary format only.

The SAS Event Stream Processing Java publish/subscribe API contains a protobuf
JAR file that implements equivalent methods for Java publish/subscribe clients. In order
to load the library that supports Google Protocol Buffers, you must have installed the
standard Google Protocol Buffers run-time library. The SAS Event Stream Processing
run-time environment must be able to find this library. For Java, you must have installed
the Google protobuf JAR file and have included it in the run-time class path.

A publish/subscribe client connection exchanges events with a single window using that
window’s schema. Correspondingly, a protobuf enabled client connection uses a
single fixed protobuf message type, as defined in a message block in a .proto file.
The library that supports Google Protocol buffers dynamically parses the message
definition, so no precompiled message-specific classes are required. However, the Java
library uses a .desc file instead of a .proto file, which requires you to run the Google
protoc compiler on the .proto file in order to generate a corresponding .desc file.

For C clients, the name of the .proto file and the enclosed message are both passed to
the library that supports Google Protocol Buffers in the
C_dfESPpubsubInitProtobuff() call. This call returns a protobuf object
instance, which is then passed in all subsequent protobuf calls by the client. This
instance is specific to the protobuf message definition. Thus, it is valid as long as the
client connection to a specific window is up. When the client stops and restarts, it must
obtain a new protobuf object instance.

288 Chapter 15 • Using the Publish/Subscribe API

For Java clients, the process is slightly different. The client creates an instance of a
dfESPprotobuf object and then calls its init() method. Subsequent protobuf
calls are made using this object’s methods, subject to the same validity scope described
for the C++ protobuf object.

Conversion between a binary event block and a protobuf is accomplished by matching
fields in the protobuf message definition to fields in the schema of the associated
publish/subscribe window. Ensure that the protobuf message definition and the
window schema are compatible. When the protobuf message definition contains
optional fields, ensure that they are included in the window schema. If a received
protobuf message is missing an optional field, the corresponding field in the event is
set to null. Conversely, when building a protobuf and a field of an event contains null,
the corresponding protobuf field is left unset, and therefore must be defined as
optional in the .proto file.

The following mapping of event stream processor to Google Protocol Buffer data types
are supported:

Event Stream Processor Data Type Google Protocol Buffer Data Type

ESP_DOUBLE TYPE_DOUBLE

TYPE_FLOAT

ESP_INT64 TYPE_INT64

TYPE_UINT64

TYPE_FIXED64

TYPE_SFIXED64

TYPE_SINT64

ESP_INT32 TYPE_INT32

TYPE_UINT32

TYPE_FIXED32

TYPE_SFIXED32

TYPE_SINT32

TYPE_ENUM

ESP_UTF8STR TYPE_STRING

ESP_DATETIME TYPE_INT64

ESP_TIMESTAMP TYPE_INT64

Other mappings are currently unsupported.

Converting Nested and Repeated Fields in Protocol Buffer
Messages to an Event Block

Provided that they are supported, you can repeat the message fields of a protobuf. A
message field of TYPE_MESSAGE can be nested, and possibly repeated as well. All of

Publish/Subscribe API Support for Google Protocol Buffers 289

these cases are supported when converting a protobuf message to an event block,
observing the following policies:

• A protobuf message that contains nested messages requires that the corresponding
schema be a flattened representation of the protobuf message. For example, a
protobuf message that contains three fields where the first is a nested message
with four fields, the second is not nested, and the third is a nested message with two
fields requires a schema with 4 + 1 + 2 = 7 fields. Nesting depth is unbounded.

• A single protobuf message is always converted to an event block that contains a
single event, provided that no nested message field is repeated.

• When a protobuf message has a non-message type field that is repeated, all the
elements in that field are gathered into a single comma-separated string field in the
event. For this reason, any schema field that corresponds to a repeated field in a
protobuf message must have type ESP_UTF8STR, regardless of the field type in
the protobuf message.

• A protobuf message that contains nested message fields that are repeated is
always converted to an event block that contains multiple events. There is one event
for each element in every nested message field that is repeated.

Converting Event Blocks to Protocol Buffer Messages
Converting an event block to a protobuf is conceptually similar to converting nested
and repeated fields in a protobuf to an event block, but the process requires more
code. Every event in an event block is converted to a separate protobuf message. For
this reason, the C_dfESPebToProtobuff() library call takes an index parameter that
indicates which event in the event block to convert. The library must be called in a loop
for every event in the event block.

The conversion correctly loads any nested fields in the resulting protobuf message.
Any repeated fields in the resulting protobuf message contain exactly one element,
because event blocks do not support repeated fields.

Note: Event block to protobuf conversions support only events with the Insert
opcode, because event opcodes are not copied to protobuf messages. Conversions
of protobuf to event blocks use the opcode that is specified in the C
C_dfESPpubsubInitProtobuff() function or Java init() function. When
protobufs are invoked by a connector or adapter, the opcode is Insert unless the
connector or adapter is configured to use Upsert.

Support for Transporting Google Protocol Buffers
Support for Google Protocol Buffers is available when you use the connectors and
adapters that are associated with the following message buses:

• IBM WebSphere MQ

• Rabbit MQ

• Solace

• Tervela

• Tibco/RV

These connectors and adapters support transport of a protobuf through the message
bus, instead of binary event blocks. This allows a third-party publisher or subscriber to
connect to the message bus and exchange a protobuf with an engine without using the

290 Chapter 15 • Using the Publish/Subscribe API

publish/subscribe API. The protobuf message format and window schema must be
compatible.

The connector or adapter requires configuration of the .proto file and message name
through the protofile and protomsg parameters. The connector converts a
protobuf to and from an event block using the SAS Event Stream Processing library
that supports Google Protocol Buffers. In addition, the C and Java Solace publish/
subscribe clients also support Google Protocol Buffers when configured to do so in the
solace.cfg client configuration file. Similarly, C RabbitMQ publish/subscribe clients
support Google Protocol Buffers when they are configured to do so in the
rabbitmq.cfg client configuration file. A protobuf enabled client publisher
converts an event block to a protobuf to transport through the message bus to a third-
party consumer of Google Protocol Buffers. Likewise, a protobuf-enabled client
subscriber receives a protobuf from the message bus and converts it to an event block.

Publish/Subscribe API Support for JSON
Messaging

Overview
SAS Event Stream Processing provides a C library to support JSON messaging. The
library provides conversion methods between an event block in binary format and a
serialized JSON message.

To exchange a JSON message with an event stream processing server, a publish/
subscribe client that uses the standard publish/subscribe API can call
C_dfESPpubsubInitJson() to load the library that supports JSON. Then a
publisher client with source data in JSON format can call C_dfESPjsonToEb() to
create event blocks in binary format. It can then call C_dfESPpublisherInject().

Similarly, a subscriber client can convert a received events block to a JSON message by
calling C_dfESPebToJson() before passing it to a JSON message handler.

Note: The server side of an event stream processing publish/subscribe connection does
not support JSON messages. It continues to send and receive event blocks in binary
format only.

A publish/subscribe client connection exchanges events with a single window using that
window’s schema. Correspondingly, a JSON-enabled client connection exchanges
messages with a fixed JSON schema. However, there is no static definition of this
schema. A schema mismatch between a JSON message and the related window schema
is detected only at run time.

The C_dfESPpubsubInitJson() call returns a JSON object instance, which is then
passed in all subsequent JSON calls by the client. This object instance is valid only
while the client connection to a specific window is up. When the client stops and
restarts, it must obtain a new JSON object instance.

Fundamentally, a single JSON message maps to a single event. However, a JSON
message can contain multiple events when you enclose them within a JSON array.

Publish/Subscribe API Support for JSON Messaging 291

Converting Nested Fields in JSON Messages to an Event Block
The window schema must be a flattened representation of the JSON event schema,
where window field names are a concatenation of any nested JSON tag names, separated
by underscores.

Within a JSON event schema, unlimited nesting of arrays and objects is supported.

When a JSON event contains an array field, all the elements in that array are gathered
into a single comma-separated string field in the event. For this reason, any schema field
that corresponds to an array field in a JSON event must have type ESP_UTF8STR,
regardless of the field type within the JSON event schema.

The event built from a JSON event always has the Insert opcode. The exception is when
the JSON event contains a field named opcode. In that case, the value of that field is
used to set the event opcode. When other JSON fields do not match fields in the source
window schema, the inject operation fails.

Table 15.1 Valid Values for the Opcode Field in a JSON Event

Value Opcode

i

I

Insert

u

U

Update

d

D

Delete

p

P

Upsert

s

S

Safe delete

By default, the event block is type= normal. When events in an event block array are
contained within an additional array (that is, enclosed in an additional pair of brackets),
the event block is type= transactional.

Converting Event Blocks to JSON Messages
All JSON events that are created from an event contain an opcode field. Valid values
are listed in Table 15.1 on page 292.

Because the input is an event block, the resulting JSON message always has an array as
its root object. Each array entry represents a single event.

Data variable type ESP_MONEY is not supported.

Data variable types ESP_TIMESTAMP and ESP_DATETIME are converted to a JSON
string that contains the CSV representation of the field value.

292 Chapter 15 • Using the Publish/Subscribe API

Support for Transporting JSON Messages
Support for JSON messaging is available when you use the connectors and adapters
associated with the following message buses:

• IBM WebSphere MQ

• RabbitMQ

• Solace

• Tervela

• Tibco/RV

These connectors and adapters support transport of JSON encoded messages through the
message bus, instead of binary event blocks. This enables a third-party publisher or
subscriber to connect to the message bus and exchange JSON messages with an engine
without using the publish/subscribe API.

No message-format configuration is required. If the JSON schema and window schema
are incompatible, a publisher that converts JSON to event blocks fails when an event
block is injected. The connector converts JSON to and from an event block using the
SAS Event Stream Processing library that supports JSON conversion.

C RabbitMQ and Solace Systems publish/subscribe clients support JSON when
configured to do so in the rabbitmq.cfg or solace.cfg client configuration files. A
JSON-enabled client publisher converts an event block to a JSON message to transport
through the message bus to a third-party consumer of JSON messages. Likewise, a
JSON enabled client subscriber receives a JSON message from the message bus and
converts it to an event block.

Publish/Subscribe API Support for XML
Messaging

SAS Event Stream Processing provides a C library to support XML messaging. This
library is analogous to the JSON messaging library described previously. It provides the
following API functions:

• C_dfESPpubsubInitXml()

• C_dfESPxmlToEb()

• C_dfESPebToXml()

These functions perform the same operations as the corresponding JSON functions in the
JSON library.

Publish/Subscribe API Support for XML Messaging 293

294 Chapter 15 • Using the Publish/Subscribe API

Chapter 16

Using Connectors

Overview to Using Connectors . 296
What Do Connectors Do? . 296
Connector Examples . 296
Obtaining Connectors . 297
Activating Optional Plug-ins . 297
Setting Configuration Parameters . 298
Setting Configuration Parameters in a File . 298
Orchestrating Connectors . 298

Using the Database Connector . 300
Overview to Using the Database Connector . 300
Subscriber Event Stream Processor to SQL Data Type Mappings 304
Publisher SQL to Event Stream Processor Data Type Mappings 304
Connectivity to Netezza Databases . 305
Using Log Miner Modes . 306

Using File and Socket Connectors . 308
Overview to File and Socket Connectors . 308
CSV File and Socket Connector Data Format . 311
XML File and Socket Connector Data Format . 311
JSON File and Socket Connector Data Format . 312
Syslog File and Socket Connector Notes . 312
HDAT Subscribe Socket Connector Notes . 313

Using the IBM WebSphere MQ Connector . 314

Using the PI Connector . 316

Using the Project Publish Connector . 320

Using the Rabbit MQ Connector . 320

Using the SMTP Subscribe Connector . 326

Using the Sniffer Publish Connector . 327

Using the Solace Systems Connector . 330

Using the Teradata Connector . 334

Using the Tervela Data Fabric Connector . 336

Using the Tibco Rendezvous (RV) Connector . 341

Writing and Integrating a Custom Connector . 344
Writing a Custom Connector . 344
Integrating a Custom Connector . 346

295

Overview to Using Connectors

What Do Connectors Do?
Connectors use the SAS Event Stream Processing publish/subscribe API to do one of the
following:

• publish event streams into source windows. Publish operations do the following,
usually continuously:

• read event data from a specified source

• inject that event data into a specific source window of a running event stream
processor

• subscribe to window event streams. Subscribe operations write output events from a
window of a running event stream processor to the specified target (usually
continuously).

Connectors do not simultaneously publish and subscribe.

You can find connectors in libraries that are located at $DFESP_HOME/lib/plugins.
On Microsoft Windows platforms, you can find them at %DFESP_HOME%\bin
\plugins.

All connector classes are derived from a base connector class that is included in a
connector library. The base connector library includes a connector manager that is
responsible for loading connectors during initialization. This library is located in
$DFESP_HOME/lib/libdfxesp_connectors-Maj.Min, where Maj.Min
indicates the release number for the distribution.

Connector Examples
Connector examples are available in $DFESP_HOME/examples/cxx. The
sample_connector directory includes source code for a user-defined connector
derived from the dfESPconnector base class. It also includes sample code that
invokes a sample connector. For more information about how to write a connector and
getting it loaded by the connector manager, see “Writing and Integrating a Custom
Connector” on page 344.

The remaining connector examples implement application code that invokes existing
connectors. These connectors are loaded by the connector manager at initialization.
Those examples are as follows:

• db_connector_publisher

• db_connector_subscriber

• json_connector_publisher

• json_connector_subscriber

• socket_connector_publisher

• socket_connector_subscriber

• xml_connector_publisher

• xml_connector_subscriber

296 Chapter 16 • Using Connectors

Obtaining Connectors
To obtain a new instance of a connector in a C++ application, call the
dfESPwindow::getConnector() method. Pass the connector type as the first
parameter, and pass a connector instance name as an optional second parameter

dfESPConnector *inputConn =
static_cast<dfESPCConnector *>(input->getConnector("fs","inputConn"));
dfESPConnector *inputConn=...

The packaged connector types are as follows:

• db

• fs

• mq

• project

• rmq

• sniffer

• smtp

• sol

• tdata

• tva

• tibrv

• pi

After a connector instance is obtained, any of its base class public methods can be called.
This includes setParameter(), which can be called multiple times to set required and
optional parameters. Parameters must be set before the connector is started.

The type parameter is required and is common to all connectors. It must be set to pub
or sub.

Additional connector configuration parameters are required depending on the connector
type, and are described later in this section.

Activating Optional Plug-ins
The $DFESP_HOME/lib/plugins directory contains the complete set of plug-in
objects supported by SAS Event Stream Processing. Plug-ins that contain "_cpi" in
their filename are connectors.

The connectors.excluded file in the $DFESP_HOME/etc directory contains a list of
connectors. When the connector manager starts, SAS Event Stream Processing loads all
connectors found in the /plugins directory, except those that are listed in
connectors.excluded.

By default, connectors.excluded specifies connectors that require third-party libraries
that are not shipped with SAS Event Stream Processing. This prevents those connectors
from being automatically loaded and generating errors due to missing dependencies.

You can edit connectors.excluded as needed. You can list any of the valid connector
types in connectors.excluded.

Overview to Using Connectors 297

Setting Configuration Parameters
Use the setParameter() method to set required and optional parameters for a
connector. You can use setParameter() as many times as you need. You must set a
connector’s parameters before starting it.

The type parameter is required and is common to all connectors. It must be set to pub
or sub. What additional connector configuration parameters are required depends on the
connector type.

Setting Configuration Parameters in a File
You can completely or partially set configuration parameters in a configuration file. You
specify a set of parameters and give that set a section label. You then can use
setParameter() to set the configfilesection parameter equal to the section
label. This configures the entire set. If any parameters are redundant, a parameter value
that you configure separately using setParameter() takes precedence.

When you configure a set of parameters, the connector finds the section label in /etc/
connectors.config and configures the parameters listed in that section.

The following lines specify a set of connector parameters to configure and labels the set
TestConfig

[testconfig]
type=pub
host=localhost
port=33340
project=sub_project
continuousquery=subscribeServer
window=tradesWindow
fstype=binary
fsname=./sorted_trades1M_256perblock.bin

You can list as many parameters as you want in a section so labeled.

Orchestrating Connectors
By default, all connectors start automatically when their associated project starts and
they run concurrently. Connector orchestration enables you to define the order in which
connectors within a project execute, depending on the state of the connector. You can
thereby create self-contained projects that orchestrate all of their inputs. Connector
orchestration can be useful to load reference data, inject bulk data into a window before
injecting streaming data, or with join windows.

You can represent connector orchestration as a directed graph, similar to how you
represent a continuous query. In this case, the nodes of the graph are connector groups,
and the edges indicate the order in which groups execute.

Connectors ordinarily are in one of three states: stopped, running, or finished. Subscriber
connectors and publisher connectors that are able to publish indefinitely (for example,
from a message bus) never reach finished state.

In order for connector execution to be dependent on the state of another connector, both
connectors must be defined in different connector groups. Groups can contain multiple
connectors, and all dependencies are defined in terms of the group, not the individual
connectors.

298 Chapter 16 • Using Connectors

When you add a connector to a group, you must specify a corresponding connector state
as well. This state defines the target state for that connector within the group. When all
connectors in a group reach their target state, all other groups dependent on that group
are satisfied. When a group becomes satisfied, all connectors within that group enter
running state.

Consider the following configuration that consists of four groups: G1, G2, G3, and G4:

G1: {<connector_pub_A, FINISHED>, <connector_sub_B, RUNNING>}
G2: {<connector_pub_C, FINISHED>}
G3: {<connector_pub_D, RUNNING>}
G4: {<connector_sub_E, RUNNING>}

And then consider the following orchestration:

• G1 -> G3: start the connectors in G3 after all of the connectors in G1 reach their
target states.

• G2 -> G3: start the connectors in G3 after all of the connectors in G2 reach their
target states. Given the previous orchestration, this means that G3 does not start until
the connectors in G1 and in G2 reach their target states.

• G2 -> G4: start the connectors in G4 after all of the connectors in G2 reach their
target states.

Because G1 and G2 do not have dependencies on other groups, all of the connectors in
those groups start right away. The configuration results in the following orchestration:

1. When the project is started, connector_pub_A, connector_sub_B, and
connector_pub_C start immediately.

2. When connector_pub_C finishes, connector_sub_E is started.

3. connector_pub_D only starts after all conditions for G3 are met, that is, when
conditions for G1 and G2 are satisfied. Thus, it starts only when
connector_pub_A is finished, connector_sub_B is running, and
connector_pub_C is finished.

A connector group is defined by calling the project newConnectorGroup() method,
which returns a pointer to a new dfESPconnectorGroup instance. If you pass only
the group name, the group is not dependent on any other group. Conversely, you can also
pass a vector or variable list of group instance pointers. This defines the list of groups
that must all become satisfied in order for the new group to run.

After you define a group, you can add connectors to it by calling the
dfESPconnectorGroup::addConnector() method. This takes a connector
instance (returned from dfESPwindow::getConnector()), and its target state.

The C++ code to define this orchestration is as follows:

dfESPconnectorGroup*G1= project->newConnectorGroup("G1");
G1-> addConnector(pub_A, dfESPabsConnector::state_FINISHED);
G1-> addConnector(sub_B, dfESPabsConnector::state_RUNNING);

dfESPconnectorGroup*G2= project->newConnectorGroup("G2");
G2-> addConnector(pub_C, dfESPabsConnector::state_FINISHED);

dfESPConnectorGroup*G3= project->newConnectorGroup("G3",2,G1,G2);
G3-> addConnector(pub_D, dfESPabsConnector::state_RUNNING);

dfESPConnectorGroup*G4= project->newConnectorGroup("G4",1,G2);
G4-> addConnector(sub_E, dfESPabsconnector::state_RUNNING);

Overview to Using Connectors 299

The corresponding XML code is as follows:

<project-connectors>
 <connector-groups>
 <connector-group name='G1'>
 <connector-entry
 connector='contQuery_name/window_for_pub_A/pb_A'
 state='finished'/>
 <connector-entry
 connector='contQuery_name/window_for_sub_B/sub_B'
 state='running'/>
 </connector-group>
 <connector-group name='G2'>
 <connector-entry
 connector='contQuery_name/window_for_pub_C/pub_C'
 state='finished'/>
 </connector-group>
 <connector-group name='G3'>
 <connector-entry
 connector='contQuery_name/window_for_pub_D/pub_D'
 state='running'/>
 </connector-group>
 <connector-group name='G4'>
 <connector-entry
 connector='contQuery_name/window_for_sub_E/sub_E'
 state='running'/>
 </connector-group>
 </connector-groups>
 <edges>
 <edge source='G1' target='G3'/>
 <edge source='G2' target='G3'/>
 <edge source='G2' target='G4'/>
 </edges>
 </project-connectors>

Using the Database Connector

Overview to Using the Database Connector
The database connector provided by SAS Event Stream Processing supports both publish
and subscribe operations. It uses the DataDirect ODBC driver. Currently, it is certified
for the following databases:

• Oracle

• MySQL

• IBM DB2

• Greenplum

• PostgreSQL

• SAP Sybase ASE

• Teradata

300 Chapter 16 • Using Connectors

• Microsoft SQL Server

• IBM Informix

• Sybase IQ

The connector requires that database connectivity be available through a system Data
Source Name (DSN). This DSN and the associated database user credentials are required
configuration parameters for the connector.

For SAS Event Stream Processing installations not on Microsoft Windows, the
DataDirect drivers are located in $DFESP_HOME/lib. The DSN required for your
specific database connection is configured in an odbc.ini file that is pointed to by the
ODBCINI environment variable. A default odbc.ini template file is available in
$DFESP_HOME/etc.

Alternatively, two useful tools to configure and verify the DataDirect drivers and your
database connection are available in $DFESP_HOME/bin:

• dfdbconf - Use this interactive ODBC Configuration Tool to add an ODBC DSN.
Run $DFESP_HOME/bin/dfdbconf. Select a driver from the list of available
drivers and set the appropriate parameters for that driver. The new DSN is added to
the odbc.ini file. In the odbc.ini file, replace $DFESP_HOME with the full path for the
driver.

• dfdbview - This interactive tool enables the user to manually connect to the
database and perform operations using SQL commands.

For Windows installations, ensure that the optional ODBC component is installed. Then
you can configure a DSN using the Windows ODBC Data Source Administrator. This
application is located in the Windows Control Panel under Administrative Tools.
Beginning in Windows 8, the icon is named ODBC Data Sources. On 64-bit operating
systems, there are 32-bit and 64-bit versions.

Perform the following steps to create a DSN in a Windows environment:

1. Enter odbc in the Windows search window. The default ODBC Data Source
Administrator is displayed.

2. Select the System DSN tab and click Add.

3. Select the appropriate driver from the list and click Finish.

4. Enter your information in the Driver Setup dialog box.

5. Click OK when finished.

This DSN is supplied as a parameter to the database connector.

The connector publisher obtains result sets from the database using a single SQL
statement configured by the user. Additional result sets can be obtained by stopping and
restarting the connector. The connector subscriber writes window output events to the
database table configured by the user.

Use the following parameters with database connectors

Table 16.1 Required Parameters for Subscriber Database Connectors

Parameter Description

type Specifies to subscribe.

Using the Database Connector 301

Parameter Description

connectstring Specifies the database DSN and user credentials in the
format "DSN=
dsn;uid=userid;pwd=password;"

tablename Specifies the target table name.

snapshot Specifies whether to send snapshot data.

Table 16.2 Required Parameters for Publisher Database Connectors

Parameter Description

type Specifies to publish.

connectstring Specifies the database DSN and user credentials in the
format "DSN=dsn;uid=userid;pwd=password;"

Table 16.3 Optional Parameters for Subscriber Database Connectors

Parameter Description

rmretdel Specifies to remove all delete events from event blocks
received by a subscriber that were introduced by a window
retention policy.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

commitrows Specifies the minimum number of output rows to buffer.

commitsecs Specifies the maximum number of seconds to hold onto an
incomplete commit buffer.

ignoresqlerrors Enables the connector to continue to write Inserts, Updates,
and Deletes to the database table despite an error in a
previous Insert, Update, or Delete.

maxcolbinding Specifies the maximum supported width of string columns.
The default value is 4096.

Table 16.4 Optional Parameters for Publisher Database Connectors

Parameter Description

blocksize Specifies the number of events to include in a published
event block. The default value is 1.

302 Chapter 16 • Using Connectors

Parameter Description

transactional Sets the event block type to transactional. The default
value is normal.

selectstatement Specifies the SQL statement to be executed on the source
database. Required when oraclelogminer and
greenplumlogminer are not enabled.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as
[configfilesection].

oraclelogminer Enables Oracle log miner mode. “Using Log Miner
Modes” on page 306.

greenplumlogminer Enables Greenplum log miner mode. “Using Log Miner
Modes” on page 306.

logminerschemaowner Specifies the schema owner when using Oracle or
Greenplum log miner mode.

For more information, see “Using Log Miner Modes” on
page 306.

logminertablename Specifies the table name when using Oracle or
Greenplum log miner mode.

For more information, see “Using Log Miner Modes” on
page 306.

logminerstartdatetime Specifies the start date time when using Oracle or
Greenplum log miner mode.

For more information, see “Using Log Miner Modes” on
page 306.

logminerdbname Specifies the gpperfmon database that contains the
queries_history table for Greenplum log miner
mode. Use the following format: “dd-mmm-yyy
hh:mm:ss”.

publishwithupsert Specifies to build events with the opcode = Upsert
instead of Insert.

maxcolbinding Specifies the maximum supported width of string
columns. The default value is 4096.

The number of columns in the source or target database table and their data types must
be compatible with the schema of the involved event stream processor window.

Using the Database Connector 303

Subscriber Event Stream Processor to SQL Data Type Mappings
For databases that have been certified to date, the event stream processor to SQL data
type mappings are as follows.

Subscriber Event
Stream Processor
Data Type SQL Data Type

ESP_UTF8STR SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR,
SQL_WCHAR, SQL_WVARCHAR, SQL_WLONGVARCHAR,
SQL_BINARY, SQL_VARBINARY, SQL_LONGVARBINARY,
SQL_GUID

ESP_INT32 SQL_INTEGER, SQL_BIGINT, SQL_DECIMAL, SQL_BIT,
SQL_TINYINT, SQL_SMALLINT

ESP_INT64 SQL_BIGINT, SQL_DECIMAL, SQL_BIT, SQL_TINYINT,
SQL_SMALLINT

ESP_DOUBLE SQL_DOUBLE, SQL_FLOAT, SQL_REAL, SQL_NUMERIC,
SQL_DECIMAL

ESP_MONEY SQL_DOUBLE (converted to ESP_DOUBLE), SQL_FLOAT,
SQL_REAL, SQL_NUMERIC (converted to SQL_NUMERIC),
SQL_DECIMAL (converted to SQL_NUMERIC)

ESP_DATETIME SQL_TYPE_DATE (only sets year/month/day), SQL_TYPE_TIME
(only sets/hours/minutes/seconds), SQL_TYPE_TIMESTAMP (sets
fractional seconds = 0)

ESP_TIMESTAMP SQL_TYPE_TIMESTAMP

Publisher SQL to Event Stream Processor Data Type Mappings
The SQL to event stream processor data type mappings are as follows:

Publisher SQL Data Type Event Stream Processor Data Types

SQL_CHAR ESP_UTF8STR

SQL_VARCHAR ESP_UTF8STR

SQL_LONGVARCHAR ESP_UTF8STR

SQL_WCHAR ESP_UTF8STR

SQL_WVARCHAR ESP_UTF8STR

SQL_WLONGVARCHAR ESP_UTF8STR

304 Chapter 16 • Using Connectors

Publisher SQL Data Type Event Stream Processor Data Types

SQL_BIT ESP_INT32, ESP_INT64

SQL_TINYINT ESP_INT32, ESP_INT64

SQL_SMALLINT ESP_INT32, ESP_INT64

SQL_INTEGER ESP_INT32, ESP_INT64

SQL_BIGINT ESP_INT64

SQL_DOUBLE ESP_DOUBLE, ESP_MONEY (upcast from
ESP_DOUBLE)

SQL_FLOAT ESP_DOUBLE, ESP_MONEY (upcast from
ESP_DOUBLE)

SQL_REAL ESP_DOUBLE

SQL_TYPE_DATE ESP_DATETIME (sets only year/month/day)

SQL_TYPE_TIME ESP_DATETIME (sets only hours/minutes/seconds)

SQL_TYPE_TIMESTAMP ESP_TIMESTAMP, ESP_DATETIME

SQL_DECIMAL ESP_INT32 (only if scale = 0, and precision must be <=
10), ESP_INT64 (only if scale = 0, and precision must be
<= 20), ESP_DOUBLE

SQL_NUMERIC ESP_INT32 (only if scale = 0, and precision must be <=
10), ESP_INT64 (only if scale = 0, and precision must be
<= 20), ESP_DOUBLE, ESP_MONEY (converted from
SQL_NUMERIC)

SQL_BINARY ESP_UTF8STR

SQL_VARBINARY ESP_UTF8STR

SQL_LONGVARBINARY ESP_UTF8STR

Connectivity to Netezza Databases
Netezza drivers are not shipped with SAS Event Stream Processing. Nevertheless, you
can use the database connector with a Netezza database table by following these steps:

1. Install the appropriate Netezza driver for your target platform.

2. Modify the odbc.ini file to include data source "NZSQL = NetezzaSQL", and
add a corresponding [NZSQL] section.

3. Modify the odbcinist.ini file to add "NetezzaSQL = Installed" to the
[ODBC Drivers] section, and add a corresponding [NetezzaSQL] section.

Using the Database Connector 305

4. Ensure that odbc.ini and odbcinst.ini are in the same directory.

5. Set the value of the ODBCINI environment variable to "<path>odbc.ini".

6. Set the value of the NZ_ODBC_INI_PATH environment variable to
"<path_to_odbc.ini>".

7. Set the value of the database connector connectstring parameter to
"DSN=NZSQL;uid=<uid>;pwd=<pwd>".

Using Log Miner Modes

Overview
The database connector can run in one of two special log miner modes: Oracle or
Greenplum. These modes apply to a publisher only. They are designed to fetch rows
from an Oracle Log Miner database or from a queries_history table in a
Greenplum gpperfmon database. After rows are fetched, an event per row is published
into a source window with a fixed, well-known subset of fields.

You configure log miner mode by enabling the appropriate parameter:
oraclelogminer or greenplumlogminer.

Using Oracle Log Miner Mode
The user name that you configure through the logminerschemaowner parameter
must have the following privileges on the Oracle Log Miner database:
SELECT_CATALOG_ROLE, EXECUTE_CATALOG_ROLE,
SELECT_ANY_TRANSACTION. The connector then repeatedly executes a select
operation to pull records from the log, given a user-provided start time. Every
subsequent select specifies a start time that is equal to the last select's end time.

Specifically, the connector defines the initial start and end times with the following
statement:

dbms_logmnr.start_logmnr(OPTIONS=>
DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG
+DBMS_LOGMNR.CONTINUOUS_MINE,STARTTIME=>logminerstartdatetime,
ENDTIME=>now);

The connector runs the repeated query with the following statement:

Select OPERATION, TIMESTAMP, SQL_REDO, CSF from v
$logmnr_contents where SEG_OWNER='logminerschemaowner' and
SEG_NAME='logminertablename'and OPERATION in
(‘INSERT’,’UPDATE’,’DELETE’);

The connector then processes SQL_REDO responses that contain Insert/Update/Delete
operations. These statements are converted to events and injected into the source
window, whose schema must begin with the following fields:

"index*:int64,ts:stamp,sql_operation:string,sql_timestamp:stam
p,schema:string,tablename:string,sql_where:string"

The connector completes these fields as follows:

• index: a unique incrementing value

• ts: the timestamp when the SQL_REDO was received

• sql_operation: INSERT/UPDATE/DELETE

306 Chapter 16 • Using Connectors

• sql_timestamp: the timestamp in the SQL_REDO response

• schema: the logminerschemaowner configured on the connector

• tablename: the logminertablename configured on the connector

• sql_where: the contents of the WHERE clause in Update and Delete statements,
excluding the ROWID value. Null for Insert.

The remainder of the schema must contain string fields named after columns returned in
the SQL_REDO Insert/Update/Delete responses. The values in these columns are copied
into the corresponding source window schema fields.

For Update and Delete events, values from the WHERE clause are copied first. For
Update events, values from the set clause are copied next, overwriting any values that
were copied from the WHERE clause.

Using Greenplum Log Miner Mode
In this mode, the connector first checks for the presence of a work table named
cq_logminerstartdatetime. If the table exists, it is truncated, else it is created
with a single column: (last_ctime timestamp(0) without time zone). The
connector then adds a row to the table that contains the value of
logminerstartdatetime. Then the connector repeatedly executes the following
SQL code in one-second intervals against the table queries_history until a nonzero
row count is returned:

SELECT COUNT(1) FROM queries_history WHERE ctime > (select
max(last_ctime) FROM “cq__logminerstartdatetime”) AND db =
‘logminerdbname’ AND username= ‘logminerschemaowner’ AND
query_text LIKE ‘%logminertablename%’;

When a nonzero row count is returned, the work table is updated as follows:

INSERT INTO “cq__logminerstartdatetime” SELECT max(ctime) FROM
queries_history WHERE ctime > (SELECT max(last_ctime) FROM
“cq__logminerstartdatetime”);

Then rows are fetched from table queries_history as follows:

SELECT ctime, query_text FROM queries_history WHERE ctime >
(SELECT max(last_ctime) FROM “cq__logminerstartdatetime” WHERE
last_ctime < (SELECT max(last_ctime) FROM
“cq__logminerstartdatetime”)) AND db = ‘logminerdbname’ AND
username = ‘logminerschemaowner’ AND query_text LIKE
‘%logminertablename%’;

After all rows are fetched, the connector loops back and begins looking for another
nonzero row count in table queries_history. Fetched rows are converted to events
and injected into the source window.

The source window schema requirements and field contents are the same as for
SQL_REDO response processing in Oracle Log Miner mode.

Using the Database Connector 307

Using File and Socket Connectors

Overview to File and Socket Connectors
File and socket connectors support both publish and subscribe operations on files or
socket connections that stream the following data types:

• binary

• csv

• xml

• json

• syslog (only supports publish operations)

• sashdat (only supports subscribe operations, and only as a client type socket
connector)

The file or socket nature of the connector is specified by the form of the configured
fsname. A name in the form of host: port is a socket connector. Otherwise, it is a file
connector.

When the connector implements a socket connection, it might act as a client or server,
regardless of whether it is a publisher or subscriber. When you specify both host and
port in the fsname, the connector implements the client. The configured host and port
specify the network peer implementing the server side of the connection. However, when
host is blank (that is, when fsname is in the form of “: port”), the connection is
reversed. The connector implements the server and the network peer is the client.

Use the following parameters when you specify file and socket connectors.

Table 16.5 Required Parameters for File and Socket Connectors

Parameter Description

type Specifies whether to publish or subscribe

fstype binary/csv/xml/json/syslog/hdat

fsname Specifies the input file for publishers, output file for
subscribers, or socket connection in the form of host: port .
Leave host blank to implement a server instead of a client.

Table 16.6 Required Parameters for Subscriber File and Socket Connectors

Parameter Description

snapshot Specifies whether to send snapshot data.

308 Chapter 16 • Using Connectors

Table 16.7 Optional Parameters for Subscriber File and Socket Connectors

Parameter Description

collapse Converts UPDATE_BLOCK events to UPDATE events in
order to make subscriber output publishable. The default
value is disabled.

periodicity Specifies the interval in seconds at which the subscriber
output file is closed and a new output file opened. When
configured, a timestamp is appended to all output filenames
for when the file was opened. This parameter does not apply
to socket connectors with fstype other than hdat.

maxfilesize Specifies the maximum size in bytes of the subscriber output
file. When reached, a new output file is opened. When
configured, a timestamp is appended to all output filenames.
This parameter does not apply to socket connectors with
fstype other than hdat.

dateformat Specifies the date format. The default value is "%Y-%m-%d
%H:%M:%S".

hdatfilename Specifies the name of the Objective Analysis Package Data
(HDAT) file to be written to the Hadoop Distributed File
System (HDFS). Include the full path, as shown in the
HDFS browser when you browse the name node specified in
the fsname parameter. Do not include the .sashdat
extension. Applies only to and is required for the hdat
connector.

hdfsblocksize Specifies in Mbytes the block size used to write a Objective
Analysis Package Data (HDAT) file. Applies only to and is
required for the hdat connector.

hdatmaxstringlength Specifies in bytes the fixed size of string fields in Objective
Analysis Package Data (HDAT) files. You must specify a
multiple of 8. Strings are padded with spaces. Applies only
to and is required for the hdat connector.

To specify unique string lengths per column, configure a
comma-separated string of values, using no spaces. Every
value must be a multiple of 8, and the number of values must
be equal to the number of string fields in the subscribed
window schema.

hdatnumthreads Specifies the size of the thread pool used for multi-threaded
writes to data node socket connections. A value of 0 or 1
indicates that writes are single-threaded and use only a
name-node connection. Applies only to and is required for
the hdat connector.

hdatmaxdatanodes Specifies the maximum number of data node connections.
The default value is the total number of live data nodes
known by the name mode. This parameter is ignored when
hdatnumthreads <=1. Applies only to the hdat
connector.

Using File and Socket Connectors 309

Parameter Description

hdfsnumreplicas Specifies the number of Hadoop Distributed File System
(HDFS) replicas created with writing a Objective Analysis
Package Data (HDAT) file. The default value is 1. Applies
only to the hdat connector.

rmretdel Specifies to remove all delete events from event blocks
received by a subscriber that were introduced by a window
retention policy.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection]

hdatlasrhostport Specifies the SAS LASR Analytic Server host and port.
Applies only to the hdat connector.

hdatlasrkey Specifies the path to tklasrkey.sh. Applies only to the hdat
connector.

Table 16.8 Optional Parameters for Publisher File and Socket Connectors

Parameter Description

blocksize Specifies the number of events to include in a published
event block. The default value is 1.

transactional Sets the event block type to transactional. The default value
is normal.

dateformat Specifies the date format. The default value is "%Y-%m-%d
%H:%M:%S".

growinginputfile Enables reading from a growing input file by publishers. The
default value is disabled. When enabled, the publisher reads
indefinitely from the input file until the connector is stopped
or the server drops the connection. This parameter does not
apply to socket connectors.

maxevents Specifies the maximum number of events to publish.

prebuffer Controls whether event blocks are buffered to an event block
vector before doing any injects. The default value is false.
Not valid with growinginputfile or for a socket
connector

header Specifies the number of input lines to skip before starting
publish operations. The default value is 0. This parameter
only applies to csv and syslog publish connectors.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection]

310 Chapter 16 • Using Connectors

Parameter Description

ignorecsvparseerrors Specifies that when a field in an input CSV file cannot be
parsed, a null value is inserted, and publishing continues.

csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

noautogenfield Specifies that input events are missing the key field that is
autogenerated by the source window.

addcsvopcode Prepends an opcode and comma to input CSV events. The
opcode is Insert unless publishwithupsert is
enabled.

addcsvflags Specifies the event type to insert into input CSV events
(with a comma). Valid values are "normal" and
"partialupdate".

publishwithupsert Specifies to build events with opcode = Upsert instead of
Insert.

CSV File and Socket Connector Data Format
A CSV publisher converts each line into an event. The first two values of each line are
expected to be an opcode and an event flag. Use the addcsvopcode and
addcsvflags parameters when any line in the CSV file does not include an opcode
and event flag.

XML File and Socket Connector Data Format
The following XML elements are valid:

• <data>

• <events>

• <transaction>

• <event>

• <opcode>

• <flags>

In addition, any elements that correspond to event data field names are valid when
contained within an event. Required elements are <events> and <event>, where
<events> contains one or more <event> elements. This defines an event block.
Events included within a <transaction> element are included in an event block with
type = transactional. Otherwise, events are included in event blocks with type
= normal.

A single <data> element always wraps the complete set of event blocks in output
XML. A closing <data> element on input XML denotes the end of streamed event
blocks. Events are created from input XML with opcode=INSERT and
flags=NORMAL, unless otherwise denoted by an <opcode> or <flags> element.

Using File and Socket Connectors 311

Valid data for the opcode element in input data includes the following:

“opcode” Tag Value Opcode

"i " Insert

"u" Update

"p" Upsert

"d" Delete

"s" Safe delete

Valid data for the flags element in input data includes the following:

• “n” — the event is normal

• “p” — the event is partial update

The subscriber writes only Insert, Update, and Delete opcodes to the output data.

Non-key fields in the event are not required in input data, and their value = NULL if
missing, or if the fields contain no data. The subscriber always writes all event data
fields.

Any event field can include the "partialupdate" XML attribute. If its value is
"true", and the event contains a flags element that specifies partial update, the event
is built with the partial update flag. The field is flagged as a partial update with a null
value.

JSON File and Socket Connector Data Format
A JSON publisher requires that the input JSON text conform to the following format:

[[event_block_n],[event_block_n+1],[event_block_n+2],....]

The outermost brackets define an array of event blocks. Each nested pair of brackets
defines an array of events that corresponds to an event block. See “Publish/Subscribe
API Support for JSON Messaging” on page 291 for the semantics to convert this array to
and from an event block.

A JSON subscriber writes JSON text in the same format expected by the JSON
publisher. In addition to the schema fields, the subscriber always includes an opcode
field whose value is the event opcode. Each event block in the output JSON is separated
by a comma and new line.

Syslog File and Socket Connector Notes
The syslog file and socket connector is supported only for publisher operations. It
collects syslog events, converts them into ESP event blocks, and injects them into one or
more source windows in a running ESP model.

The input syslog events are read from a file or named pipe written by the syslog daemon.
Syslog events filtered out by the daemon are not seen by the connector. When reading
from a named pipe, the following conditions must be met:

• The connector must be running in the same process space as the daemon.

312 Chapter 16 • Using Connectors

• The pipe must exist.

• The daemon must be configured to write to the named pipe.

You can specify the growinginputfile parameter to read data from the file or named
pipe as it is written.

The connector reads text data one line at a time, and parses the line into fields using
spaces as delimiters.

The first field in the window schema must be a key field of type INT32. The other fields
in the corresponding window schema must be of type ESP_UTF8STR or
ESP_DATETIME. The number of schema fields must not exceed the number of fields
parsed in the syslog file.

A sample schema is as follows:

<schema>
 <fields>
 <field name='ID' type='int32' key='true'/>
 <field name='udate' type='date'/>
 <field name='hostname' type='string'/>
 <field name='message' type='string'/>
 </fields>
</schema>

HDAT Subscribe Socket Connector Notes
This connector writes Objective Analysis Package Data (HDAT) files in SASHDAT
format. This socket connector connects to the name node specified by the fsname
parameter. The default LASR name node port is 15452. You can configure this port.
Refer to the SAS Hadoop plug-in property for the appropriate port to which to connect.

The SAS Hadoop plug-in must be configured to permit puts from the service. Configure
the property com.sas.lasr.hadoop.service.allow.put=true. By default,
these puts are enabled. Ensure that this property is configured on data nodes in addition
to the name node.

If run multi-threaded (as specified by the hdatnumthreads parameter), the connector
opens socket connections to all the data nodes that are returned by the name node. It then
writes subscriber event data as Objective Analysis Package Data (HDAT) file parts to all
data nodes using the block size specified by the hdfsblocksize parameter. These file
parts are then concatenated to a single file when the name node is instructed to do so by
the connector.

The connector automatically concatenates file parts when stopped. It might also stop
periodically as specified by the optional periodicity and maxfilesize parameters.

By default, socket connections to name nodes and to data nodes have a default time out
of five minutes. This time out causes the server to disconnect the event stream
processing connector after five minutes of inactivity on the socket. It is recommended
that you disable the time out by configuring a value of 0 on the SAS Hadoop plug-in
configuration property com.sas.lasr.hadoop.socket.timeout.

Because SASHDAT format consists of static row data, the connector ignores Delete
events. It treats Update events the same as Insert events.

When you specify the lasrhostport parameter, the HDAT file is written and then the
file is loaded into a LASR in-memory table. When you specify the periodicity or
maxfilesize parameters, each write of the HDAT file is immediately followed by a
load of that file.

Using File and Socket Connectors 313

Using the IBM WebSphere MQ Connector
The IBM WebSphere MQ connector (MQ) supports the IBM WebSphere Message
Queue Interface for publish and subscribe operations. The subscriber receives event
blocks and publishes them to an MQ queue. The publisher is an MQ subscriber, which
injects received event blocks into source windows.

The IBM WebSphere MQ Client run-time libraries must be installed on the platform that
hosts the running instance of the connector. The run-time environment must define the
path to those libraries (for example, specifying LD_LIBRARY_PATH on Linux
platforms).

The connector operates as an MQ client. It requires that you define the environment
variable MQSERVER to specify the connector’s MQ connection parameters. This variable
specifies the server’s channel, transport type, and host name. For more information, see
your WebSphere documentation.

The topic string used by an MQ connector is a required connector parameter. In addition,
an MQ subscriber requires a parameter that defines the message format used to publish
events to MQ. An MQ publisher can consume any message type that is produced by an
MQ subscriber.

An MQ publisher requires two additional parameters that are related to durable
subscriptions. The publisher always subscribes to an MQ topic using a durable
subscription. This means that the publisher can re-establish a former subscription and
receive messages that had been published to the related topic while the publisher was
disconnected.

These parameters are as follows:

• subscription name, which is user supplied and uniquely identifies the subscription

• subscription queue, which is the MQ queue opened for input by the publisher

The MQ persistence setting of messages written to MQ by an MQ subscriber is always
equal to the persistence setting of the MQ queue.

Use the following parameters for MQ connectors.

Table 16.9 Required Parameters for Subscriber MQ Connectors

Parameter Description

type Specifies to subscribe.

mqtopic Specifies the MQ topic name.

mqtype Specifies binary, CSV, JSON, or opaque string.

snapshot Specifies whether to send snapshot data.

314 Chapter 16 • Using Connectors

Table 16.10 Required Parameters for Publisher MQ Connectors

Parameter Description

type Specifies to publish.

mqtopic Specifies the MQ topic name.

mqsubname Specifies the MQ subscription name.

mqsubqueue Specifies the MQ queue.

mqtype Specifies binary, CSV, or JSON.

Table 16.11 Optional Parameters for Subscriber MQ Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

queuemanager Specifies the MQ queue manager.

dateformat Specifies the date format. The default value is "%Y-%m-%d
%H:%M:%S".

rmretdel Specifies to remove all delete events from event blocks
received by a subscriber that were introduced by a window
retention policy.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

protofile Specifies the .proto file that contains the Google Protocol
Buffers message definition. This definition is used to convert
event blocks to protobuf messages. When you specify this
parameter, you must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in
the .proto file that you specified with the protofile
parameter. Event blocks are converted into this message.

Table 16.12 Optional Parameters for Publisher MQ Connectors

Parameter Description

blocksize Specifies the number of events to include in a published
event block. The default value is 1.

Using the IBM WebSphere MQ Connector 315

Parameter Description

transactional Sets the event block type to transactional. The default value
is normal.

dateformat Specifies the date format. The default value is "%Y-%m-%d
%H:%M:%S".

queuemanager Specifies the MQ queue manager.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

ignorecsvparseerrors When a field in an input CSV event cannot be parsed, insert
a null value and continue publishing.

protofile Specifies the .proto file that contains the Google Protocol
Buffers message definition. This definition is used to convert
event blocks to protobuf messages. When you specify this
parameter, you must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in
the .proto file that you specified with the protofile
parameter. Event blocks are converted into this message.

csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

noautogenfield Specifies that input events are missing the key field that is
autogenerated by the source window.

publishwithupsert Specifies to build events with opcode = Upsert instead of
Insert.

Using the PI Connector
The PI Connector supports publish and subscribe operations for a PI Asset Framework
(AF) server. The model must implement a window of a fixed schema to carry values that
are associated with AF attributes owned by AF elements in the AF hierarchy. The AF
data reference can be defined as a PI Point for these elements.

Note: Support for the PI Connector is available only on 64–bit Microsoft Windows
platforms.

The PI Asset Framework (PI AF) Client from OSIsoft must be installed on the Microsoft
Windows platform that hosts the running instance of the connector. The connector loads
the OSIsoft.AFSDK.DLL public assembly, which requires .NET 4.0 installed on the
target platform. The run-time environment must define the path to OSIsoft.AFSDK.dll.

The Microsoft Visual C++ Redistributable for Visual Studio 2012 package must be
installed on the Microsoft Windows platform. The library for this connector is built with

316 Chapter 16 • Using Connectors

a different version of tools than those used by SAS Event Stream Processing libraries in
order to achieve .NET 4.0 compatibility.

The window that is associated with the connector must use the following schema:

ID*:int32,elementindex:string,element:string,attribute:string,value:variable:,
timestamp:stamp,status:string

Use the following schema values.

Schema Value Description

elementindex Value of the connector afelement configuration parameter.
Specify either an AF element name or an AF element
template name.

element Name of the AF element associated with the value.

attribute Name of the AF attribute owned by the AF element.

value Value of the AF attribute.

timestamp Timestamp associated with the value.

status Status associated with the value.

Note: The type of the value field is determined by the type of the AF attribute as defined
in the AF hierarchy.

The following mapping of event stream processor data type to AF attributes is
supported:

Event Stream Processor
Data Type AF Attribute

ESP_DOUBLE TypeCode::Single

TypeCode::Double

ESP_INT32 TypeCode::Byte

TypeCode::SByte

TypeCode::Char

TypeCode::Int16

TypeCode::UInt16

TypeCode::Int32

TypeCode::UInt32

ESP_INT64 TypeCode::Int64

TypeCode::UInt64

ESP_UTF8STR TypeCode::String

ESP_TIMESTAMP TypeCode::DateTime

Using the PI Connector 317

If an attribute has TypeCode::Object, the connected uses the type of the underlying
PI point. Valid event stream processing data types to PI point mappings are as follows:

Event Stream Processor
Data Type PI Point

ESP_INT32 PIPointType::Int16

PIPointType::Int32

ESP_DOUBLE PIPointType::Float16

PIPointType::Float32

ESP_TIMESTAMP PIPointType::Timestamp

ESP_UTF8STR PIPointType::String

Use the following parameters with PI connectors:

Table 16.13 Required Parameters for Subscriber PI Connectors

Parameter Description

type Specifies to subscribe.

afelement Specifies the AF element or element template name.
Wildcards are supported.

iselementtemplate Specifies whether the afelement parameter is an element
template name. By default, the afelement parameter
specifies an element name. Valid values are TRUE or FALSE.

snapshot Specifies whether to send snapshot data.

Table 16.14 Required Parameters for Publisher PI Connectors

Parameter Description

type Specifies to publish.

afelement Specifies the AF element or element template name.
Wildcards are supported.

iselementtemplate Specifies that the afelement parameter is an element
template name. By default, the afelement parameter
specifies an element name.

318 Chapter 16 • Using Connectors

Table 16.15 Optional Parameters for Subscriber PI Connectors

Parameter Description

rmretdel Remove all delete events from event blocks received by the
subscriber that were introduced by a window retention policy.

pisystem Specifies the PI system. The default is the PI system that is
configured in the PI AF client.

afdatabase Specifies the AF database. The default is the AF database that
is configured in the PI AF client.

afrootelement Specifies the root element in the AF hierarchy from which to
search for parameter afelement. The default is the top-
level element in the AF database.

afattribute Specifies a specific attribute in the element. The default is all
attributes in the element.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

Table 16.16 Optional Parameters for Publisher PI Connectors

Parameter Description

blocksize Specifies the number of events to include in a published event
block. The default value is 1.

transactional Sets the event block type to transactional. The default value is
normal.

pisystem Specifies the PI system. The default is the PI system that is
configured in the PI AF client.

afdatabase Specifies the AF database. The default is the AF database that
is configured in the PI AF client.

afrootelement Specifies the root element in the AF hierarchy from which to
search for the parameter afelement. The default is the
top-level element in the AF database.

afattribute Specifies a specific attribute in the element. The default is all
attributes in the element.

archivetimestamp Specifies that all archived values from the specified
timestamp onwards are to be published when connecting to
the PI system. The default is to publish only new values.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

Using the PI Connector 319

Parameter Description

publishwithupsert Specifies to build events with opcode = Upsert instead of
Insert.

Using the Project Publish Connector
Use the project publish connector to subscribe to event blocks that are produced by a
window from a different project within the event stream processing model. The
connector receives that window’s event blocks and injects them into its associated
window. Window schemas must be identical. When the source project is stopped, the
flow of event blocks to the publisher is stopped.

The project publish connector has a reference-counted copy of the events so that only a
single copy of the event is in memory.

Table 16.17 Required Parameters for the Project Publish Connector

Parameter Description

type Specifies to publish.

srcproject Specifies the name of the source project.

srccontinuous
query

Specifies the name of the source continuous query.

srcwindow Specifies the name of the source window.

Table 16.18 Optional Parameters for the Project Publish Connector

Parameter Description

maxevents Specifies the maximum number of events to publish.

configfilesec
tion

Specifies the name of the section in /etc/connectors.config to
parse for configuration parameters. Specify the value as
[configfilesection].

Using the Rabbit MQ Connector
The Rabbit MQ connector communicates with a Rabbit MQ server for publish and
subscribe operations. The bus connectivity provided by the connector eliminates the
need for the engine to manage individual publish/subscribe connections. The connector
achieves a high capacity of concurrent publish/subscribe connections to a single engine.

320 Chapter 16 • Using Connectors

A Rabbit MQ subscriber connector receives event blocks and publishes them to a Rabbit
MQ routing key. A Rabbit MQ publisher connector reads event blocks from a
dynamically created Rabbit MQ queue and injects them into an event stream processing
source window.

Event blocks as transmitted through the Rabbit MQ server can be encoded as binary,
CSV, Google protobufs, or JSON messages. The connector performs any conversion to
and from binary format. The message format is a connector configuration parameter.

The Rabbit MQ connector supports hot failover operation. This mode requires that you
install the presence-exchange plug-in on the Rabbit MQ server. You can download that
plug-in from https://github.com/tonyg/presence-exchange.

Ensure that the presence-exchange version that you use matches that of the installed
Rabbit MQ server. For example, if you use server version 3.5.x, you can use presence-
exchange version 3.5.y, where x and y differ but both are version 3.5. Mismatched
versions (for example, 3.4.x and 3.3.y) might work in some cases, but this type of
mismatch is not recommended.

A corresponding event stream processing publish/subscribe client plug-in library is
available. This library enables a standard event stream processing publish/subscribe
client application to exchange event blocks with an event stream processing server
through a Rabbit MQ server. The exchange takes place through the Rabbit MQ server
instead of through direct TCP connections. To enable this exchange, add a call to
C_dfESPpubsubSetPubsubLib().

When configured for hot failover operation, the active/standby status of the connector is
coordinated with the Rabbit MQ server. Thus, a standby connector becomes active when
the active connector fails. All involved connectors must meet the following conditions to
guarantee successful switchovers:

• They must belong to identical ESP models.

• They must initiate message flow at the same time. This is required because message
IDs must be synchronized across all connectors.

When a new subscriber connector becomes active, outbound message flow remains
synchronized. This is due to buffering of messages by standby connectors and
coordination of the resumed flow with the Rabbit MQ server. The size of the message
buffer is a required parameter for subscriber connectors.

You can configure a subscriber Rabbit MQ connector to send a custom snapshot of
window contents to any subscriber client. The client must have established a new
connection to the Rabbit MQ server. This enables late subscribers to catch up upon
connecting. This functionality also requires that you install the presence-exchange plug-
in on the Rabbit MQ server.

When the connector starts, it subscribes to topic “urlhostport/M” (where urlhostport
is a connector configuration parameter). This enables the connector to receive metadata
requests from clients that publish or subscribe to a window in an engine associated with
that host:port combination. Metadata responses consist of some combination of the
following:

• project name of the window associated with the connector

• query name of the window associated with the connector

• window name of the window associated with the connector

• the serialized schema of the window

You must install Rabbit MQ client run-time libraries on the platform that hosts the
running instance of the connector. The connector uses the rabbitmq-c v0.5.2 C

Using the Rabbit MQ Connector 321

libraries, which you can download from https://github.com/alanxz/rabbitmq-c. The run-
time environment must define the path to those libraries (for example, specifying
LD_LIBRARY_PATH on Linux platforms).

For queues that are created by a publisher, the optional buspersistence parameter
controls both auto-delete and durable.

Setting of the buspersistence
parameter Effect

true auto-delete = false

durable = true

false auto-delete = true

durable = false

The following holds when consuming from those queues:

Setting of the buspersistence
parameter Effect

true exclusive = true

noack = false

false exclusive = false

noack = true

When the publisher connector creates a durable receive queue with auto-delete disabled,
it consumes from that queue with noack = false but does not explicitly
acknowledge messages. This enables a rebooted event stream processing server to
receive persisted messages. To have a buspersistent publisher occasionally
acknowledge groups of messages older than a specified age, configure the combination
of ackwindow and acktimer parameters. This keeps the message queue from growing
unbounded, avoiding administrator intervention.

The queue name is equal to the buspersistencequeue parameter appended with the
configured topic parameter. The buspersistencequeue parameter must be unique
on all publisher connectors that use the same Rabbit MQ exchange. The publisher
connector enforces this by consuming the queue in exclusive mode when
buspersistence is enabled.

For a subscriber connector, enabling buspersistence means that messages are sent
with the delivery mode set to persistent.

For exchanges that are created by a publish or a subscribe, buspersistence controls
only durable. That is, when buspersistence = true, durable = true, and
when buspersistence = false, durable = false.

Table 16.19 Required Parameters for Subscriber Rabbit MQ Connectors

Parameter Description

type Specifies to subscribe.

322 Chapter 16 • Using Connectors

Parameter Description

rmquserid Specifies the user name required to authenticate the connector’s
session with the Rabbit MQ server.

rmqpassword Specifies the password associated with rmquserid.

rmqhost Specifies the Rabbit MQ server host name.

rmqport Specifies the Rabbit MQ server port.

rmqexchange Specifies the Rabbit MQ exchange created by the connector, if
nonexistent.

rmqtopic Specifies the Rabbit MQ routing key to which messages are
published.

rmqtype Specifies binary, CSV, or JSON.

urlhostport Specifies the host:port field in the metadata topic subscribed to on
start-up to field metadata requests.

numbufferedmsgs Specifies the maximum number of messages buffered by a standby
subscriber connector. When exceeded, the oldest message is
discarded. When the connector goes active, the buffer is flushed and
buffered messages are sent to the fabric as required to maintain
message ID sequence.

snapshot Specifies whether to send snapshot data. This parameter is invalid if
buspersistence or hotfailover is enabled.

Table 16.20 Required Parameters for Publisher Rabbit MQ Connectors

Parameter Description

type Specifies to publish.

rmquserid Specifies the user name required to authenticate the connector’s
session with the Rabbit MQ server.

rmqpassword Specifies the password associated with rmquserid.

rmqhost Specifies the Rabbit MQ server host name.

rmqport Specifies the Rabbit MQ server port.

rmqexchange Specifies the Rabbit MQ exchange created by the connector, if
nonexistent.

rmqtopic Specifies the Rabbit MQ routing key to which messages are
published.

Using the Rabbit MQ Connector 323

Parameter Description

rmqtype Specifies binary, CSV, JSON, or opaque string.

urlhostport Specifies the host:port field in the metadata topic subscribed to on
start-up to field metadata requests.

Table 16.21 Optional Parameters for Subscriber Rabbit MQ Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

rmretdel Specifies to remove all delete events from event blocks received by
a subscriber that were introduced by a window retention policy.

hotfailover Enables hot failover mode.

dateformat Specifies the date format. The default value is "%Y-%m-%d %H:
%M:%S".

buspersistence Specify to send messages using persistent delivery mode.

protofile Specifies the .proto file that contains the Google Protocol Buffers
message definition used to convert event blocks to protobuf
messages. When you specify this parameter, you must also specify
the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in
the .proto file that you specified with the protofile
parameter. Event blocks are converted into this message.

csvincludeschema Specifies "never", "once", or "pereventblock". The default
value is "never". When rmqtype = CSV, prepend output
CSV with the window’s serialized schema.

useclientmsgid When performing a failover operation and extracting a message ID
from an event block, use the client-generated message ID instead of
the engine-generated message ID.

configfilesectio
n

Specifies the name of the section in /etc/connectors.config
to parse for configuration parameters. Specify the value as
[configfilesection].

Table 16.22 Optional Parameters for Publisher Rabbit MQ Connectors

Parameter Description

transactional When rmqtype = CSV, sets the event block type to
transactional. The default value is normal.

324 Chapter 16 • Using Connectors

Parameter Description

blocksize When rmqytype = CSV, specifies the number of events
to include in a published event block. The default value is 1.

dateformat Specifies the date format. The default value is "%Y-%m-%d
%H:%M:%S".

buspersistence Controls both auto-delete and durable.

buspersistencequeue Specify the queue name used by a persistent publisher.

ignorecsvparseerror
s

Specifies that when a field in an input CSV file cannot be
parsed, a null value is inserted, and publishing continues.

protofile Specifies the .proto file that contains the Google Protocol
Buffers message definition used to convert event blocks to
protobuf messages. When you specify this parameter, you
must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in
the .proto file that you specified with the protofile
parameter. Event blocks are converted into this message.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration parameters.
Specify the value as [configfilesection].

csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

noautogenfield Specifies that input events are missing the key field that is
autogenerated by the source window.

ackwindow Specifies the time period (in seconds) to leave messages that
are received from Rabbit MQ unacknowledged. Applies only
when buspersistence = true, when, by default,
messages are never acknowledged. When configured,
messages are acknowledged this number of seconds after
having been received. Must be configured if acktimer is
configured.

acktimer Specifies the time interval (in seconds) for how often to check
whether to send acknowledgments that are triggered by the
ackwindow parameter. Must be configured if ackwindow
is configured.

publishwithupsert Specifies to build events with opcode = Upsert instead of
Insert.

Using the Rabbit MQ Connector 325

Using the SMTP Subscribe Connector
You can use the Simple Mail Transfer Protocol (SMTP) subscribe connector to e-mail
window event blocks or single events, such as alerts or items of interest. This connector
is subscribe-only. The connection to the SMTP server uses port 25. No user
authentication is performed, and the protocol runs unencrypted.

The e-mail sender and receiver addresses are required information for the connector. The
e-mail subject line contains a standard event stream processor URL in the form
"dfESP://host:port/project/contquery/window", followed by a list of the
key fields in the event. The e-mail body contains data for one or more events encoded in
CSV format.

The parameters for the SMTP connector are as follows:

Table 16.23 Required Parameters for the SMTP Connector

Parameter Description

type Specifies to subscribe.

smtpserver Specifies the SMTP server host name or IP address.

sourceaddress Specifies the e-mail address to be used in the “from” field of
the e-mail.

destaddress Specifies the e-mail address to which to send the e-mail
message.

snapshot Specifies whether to send snapshot data.

Table 16.24 Optional Parameters for SMTP Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

emailperevent Specifies true or false. The default is false. If false, each e-
mail body contains a full event block. If true, each mail
body contains a single event.

rmretdel Specifies to remove all delete events from event blocks
received by a subscriber that were introduced by a window
retention policy.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

326 Chapter 16 • Using Connectors

Using the Sniffer Publish Connector
The sniffer connector captures packets from a local network interface in promiscuous
mode and builds an event per received packet to be injected into a source window. An
instance of the connector is configured with the interface name, a protocol, and a comma
separated list of fields to be extracted and included in the event. Additional connectors
can be instanced to capture additional packets in any combination of interface/protocol/
fields, and injected to any source window.

Protocol support is currently limited to the following:

• HTTP packets sent to port 80 over TCP

• Radius Accounting-Request packets sent to port 1813 over UDP. Only attribute
values between 1 and 190 inclusive are supported. If you capture the Attribute-
Specific field of a Vendor-Specific attribute, you must configure the
vendorid and vendortype connector parameters.

• Traffic on other ports is supported only to the extent that the IP source and
destination address, TCP or UDP source and destination port, and the verbatim
payload are captured. Other packet fields are not available for capture.

Support is included for an optional 802.1Q VLAN tag header following the Ethernet
header, but in all other cases the IP header must directly follow the Ethernet header.

The connector uses the libpcap libraries, which are not shipped with ESP. You must
install these libraries separately on the target machine. They are available for download
at http://www.tcpdump.orgor, for Microsoft Windows, http://www.winpcap.org.

Most kernels protect against applications opening raw sockets. On Linux platforms, the
connector logs the following error message unless the application is given permission to
open raw sockets:

“You don't have permission to capture on that device (socket: Operation not permitted)”

To grant suitable permissions to the server that is running the connector, run the
following command: setcap cap_net_raw,cap_net_admin=eip executable.
You must have root privileges to run the command.

A side effect of granting these permissions is that the application no longer uses the
shell’s LD_LIBRARY_PATH environment variable. For the SAS Event Stream
Processing server application, this means that it must have an alternative method of
finding shared objects in $DFESP_HOME/lib. Use the ldconfig command to update
the shared library cache with the $DFESP_HOME/lib directory before running the SAS
Event Stream Processing server.

The packetfields configuration parameter uses SAS Event Stream Processing
schema-like syntax, and must match the source window schema. There are three
exceptions:

• The source window schema must contain an additional index:int64 field that
contains an increasing index value and that serves as the key field.

• The source window schema must also contain an additional frame_time:stamp
field that contains the timestamp created by the pcap driver.

• When the optional addtimestamp connector configuration parameter is specified,
the source window schema must also contain a ts:stamp field to hold the
timestamp. This field is created by the connector and holds the current time.

Using the Sniffer Publish Connector 327

http://www.tcpdump.org/
http://www.winpcap.org/

The index and frame_time fields must be the first two fields in the window schema.
The ts field must be the last field in the window schema.

When the blocksize parameter is configured with a value greater than 1, the
connector builds event blocks of size no greater than the configured blocksize. It can
build event blocks with a smaller size when the pcap driver buffer has filled up, or
when the read timeout on the socket opened by the pcap driver has expired. This
ensures that the connector injects all events available from packets received on the
interface as soon as possible, without having to wait to fill an event block.

When the protocol parameter is not set to 80 or 1813, the fields supported in
packetfields are the IP source and destination address, the TCP or UDP source and
destination ports, and “payload:string”.

When a received packet is malformed or contains an invalid parameter or length, the
connector generally logs an info level message, ignores the packet, and continues.

For testing, you can receive packets from a .pcap capture file instead of a network
interface. You can specify the name of this capture file in the connector interface
parameter. When the connector cannot find a matching interface name, it treats the name
as a .pcap filename.

Table 16.25 Required Parameters

Parameter Definition

type Specifies to publish. The required value is
pub.

interface Specifies the name of the network interface on
the local machine from which to capture
packets.

protocol Specifies the port number associated with the
protocol type of packets to be captured. You
can specify this as a comma-separated list of
port numbers.

328 Chapter 16 • Using Connectors

Parameter Definition

packetfields Specifies the packet fields to be extracted
from a captured packet and included in the
published event. Use SAS Event Stream
Processing schema syntax. This value does
not include the index:int64
frame_time:stamp, or ts:stamp
fields.

Separate nested fields with an underscore
character. Match field names to standard
names as displayed by the Wireshark open-
source packet analyzer. You must remove
spaces and hyphens to maintain field name
integrity.

An example for Radius is as follows:
"radius_AcctStatusType:int32,radi
us_EventTimestamp:stamp,radius_Fr
amedIPAddress:string,radius_UserN
ame:string".

An example for HTTP is as follows:
"ip_Source:string,ip_Destination:
string,http_Host:string,http_Refe
rer:string,http_UserAgent:string,
http_GET_RequestURI:string".

If protocol is not set to 80 or 1813, the
only supported values are the IP source and
destination address, the TCP or UDP source
and destination ports, and
"payload:string".

Table 16.26 Optional Parameters

Parameter Description

transactional Sets the event block type to transactional. The
default value is normal.

blocksize Specifies the number of events to include in a
published event block. The default value is 1.

addtimestamp Specifies to append an ESP_TIMESTAMP
field to each published event. The field value
is the current time when the packet was
received by the connector. This field must be
present in the source window schema, but it is
not required in the connector
packetfields parameter.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for
configuration parameters. Specify the value as
[configfilesection].

Using the Sniffer Publish Connector 329

Parameter Description

vendorid Specifies the vendor-Id field to match
when capturing the Attribute-
Specific field in a Vendor-Specific
attribute in a Radius Accounting-Request
packet.

vendortype Specifies the vendor-Type field to match
when capturing the Attribute-
Specific field in a Vendor-Specific
attribute in a Radius Accounting-Request
packet.

indexfieldname Specifies the name to use instead of index
for the index:int64 field in the source
window schema.

publishwithupsert Specifies to build events with opcode = Upsert
instead of Insert.

pcapfilter Specifies a filter expression as defined in the
pcap documentation. Passed to the pcap driver
to filter packets received by the connector.

Using the Solace Systems Connector
The Solace Systems connector communicates with a hardware-based Solace fabric for
publish and subscribe operations.

A Solace Systems subscriber connector receives event blocks and publishes them to this
Solace topic:

"host:port/projectname/queryname/windowname/O

A Solace Systems publisher connector reads event blocks from the following Solace
topic

"host:port/projectname/queryname/windowname/I

and injects them into the corresponding source window.

As a result of the bus connectivity provided by the connector, the engine does not need
to manage individual publish/subscribe connections. A high capacity of concurrent
publish/subscribe connections to a single event stream processing engine is achieved.

The Solace Systems run-time libraries must be installed on the platform that hosts the
running instance of the connector. The run-time environment must define the path to
those libraries (for example, specifying LD_LIBRARY_PATH on Linux platforms).

The Solace Systems connector operates as a Solace client. All Solace connectivity
parameters are required as connector configuration parameters.

You must configure the following items on the Solace appliance to which the connector
connects:

330 Chapter 16 • Using Connectors

• a client user name and password to match the connector’s soluserid and
solpassword configuration parameters

• a message VPN to match the connector’s solvpn configuration parameter

• On the message VPN, you must enable “Publish Subscription Event Messages”.

• On the message VPN, you must enable “Client Commands” and “Show Commands”
under “SEMP over Message Bus”.

• On the message VPN, you must configure a nonzero “Maximum Spool Usage”.

• When hot failover is enabled on subscriber connectors, you must create a single
exclusive queue named “active_esp” in the message VPN. Set the queue owner to
the appropriate client user name. The subscriber connector that successfully binds to
this queue becomes the active connector.

• When buspersistence is enabled, you must enable “Publish Client Event
Messages” on the message VPN.

• When buspersistence is enabled, you must create exclusive queues for all
subscribing clients. The queue name must be equal to the buspersistenceque
queue configured on the publisher connector (for “/I” topics), or the queue
configured on the client subscriber (for “/O” topics). Add the corresponding topic to
each configured queue.

• When buspersistence is enabled or hot failover is enabled on subscriber
connectors, you must enable “Allow Guaranteed Endpoint Create”, “Allow
Guaranteed Message Send”, and “Allow Guaranteed Message Receive” in your
client profile.

When the connector starts, it subscribes to topic “urlhostport/M” (where urlhostport is a
connector configuration parameter). This enables the connector to receive metadata
requests from clients that publish or subscribe to a window in an ESP engine associated
with that host:port combination. Metadata responses consist of some combination of the
project, query, and window names of the window associated with the connector, as well
as the serialized schema of the window.

Solace Systems subscriber connectors support a hot failover mode. The active/standby
status of the connector is coordinated with the fabric so that a standby connector
becomes active when the active connector fails. Several conditions must be met to
guarantee successful switchovers:

• All involved connectors must be active on the same set of topics.

• All involved connectors must initiate message flow at the same time. This is required
because message IDs must be synchronized across all connectors.

• Google protocol buffer support must not be enabled, because these binary messages
do not contain a usable message ID.

When a new subscriber connector becomes active, outbound message flow remains
synchronized due to buffering of messages by standby connectors and coordination of
the resumed flow with the fabric. The size of this message buffer is a required parameter
for subscriber connectors.

You can configure Solace Systems connectors to use a persistent mode of messaging
instead of the default direct messaging mode. (See the description of the
buspersistence configuration parameter.) This mode might require regular purging
of persisted data by an administrator, if there are no other automated mechanism to age
out persisted messages. The persistent mode reduces the maximum throughput of the
fabric, but it enables a publisher connector to connect to the fabric after other connectors

Using the Solace Systems Connector 331

have already processed data. The fabric updates the connector with persisted messages
and synchronizes window states with the other engines in a hot failover group.

Solace Systems subscriber connectors subscribe to a special topic that enables them to be
notified when a Solace client subscribes to the connector’s topic. When the connector is
configured with snapshot enabled, it sends a custom snapshot of the window contents to
that client. This enables late subscribers to catch up upon connecting.

Solace Systems connector configuration parameters named “sol…” are passed
unmodified to the Solace API by the connector. See your Solace documentation for more
information about these parameters.

Use the following parameters with Solace Systems connectors

Table 16.27 Required Parameters for Subscriber Solace Systems Connectors

Parameter Description

type Specifies to subscribe.

soluserid Specifies the user name required to authenticate the
connector’s session with the appliance.

solpassword Specifies the password associated with soluserid.

solhostport Specifies the appliance to connect to, in the form
“host:port”.

solvpn Specifies the appliance message VPN to assign the client to
which the session connects.

soltopic Specifies the Solace destination topic to which to publish.

urlhostport Specifies the host:port field in the metadata topic subscribed
to on start-up to field metadata requests.

numbufferedmsgs Specifies the maximum number of messages buffered by a
standby subscriber connector. If exceeded, the oldest
message is discarded. If the connector goes active the buffer
is flushed, and buffered messages are sent to the fabric as
required to maintain message ID sequence.

snapshot Specifies whether to send snapshot data.

Table 16.28 Required Parameters for Publisher Solace Systems Connectors

Parameter Description

type Specifies to publish.

soluserid Specifies the user name required to authenticate the
connector’s session with the appliance.

solpassword Specifies the password associated with soluserid.

332 Chapter 16 • Using Connectors

Parameter Description

solhostport Specifies the appliance to connect to, in the form
“host:port”.

solvpn Specifies the appliance message VPN to assign the client to
which the session connects.

soltopic Specifies the Solace topic to which to subscribe.

urlhostport Specifies the host:port field in the metadata topic subscribed
to on start-up to field metadata requests.

Table 16.29 Optional Parameters for Subscriber Solace Systems Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

hotfailover Enables hot failover mode.

buspersistence Sets the Solace message delivery mode to Guaranteed
Messaging. The default value is Direct Messaging.

rmretdel Specifies to remove all delete events from event blocks
received by a subscriber that were introduced by a window
retention policy.

protofile Specifies the .proto file that contains the Google Protocol
Buffers message definition used to convert event blocks to
protobuf messages. When you specify this parameter,
you must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in
the .proto file that you specified with the protofile
parameter. Event blocks are converted into this message.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

json Enables transport of event blocks encoded as JSON
messages.

Using the Solace Systems Connector 333

Table 16.30 Optional Parameters for Publisher Solace Systems Connectors

Parameter Description

buspersistence Creates the Guaranteed message flow to bind to the topic
endpoint provisioned on the appliance that the published
Guaranteed messages are delivered and spooled to. By
default this flow is disabled, because it is not required to
receive messages published using Direct Messaging.

buspersistencequeue Specifies the name of the queue to which the Guaranteed
message flow binds.

protofile Specifies the .proto file that contains the Google Protocol
Buffers message definition used to convert event blocks to
protobuf messages. When you specify this parameter,
you must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in
the .proto file that you specified with the protofile
parameter. Event blocks are converted into this message.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

json Enables transport of event blocks encoded as JSON
messages.

Using the Teradata Connector
The Teradata connector uses the Teradata Parallel Transporter (TPT) API to support
subscribe operations against a Teradata server.

The Teradata Tools and Utilities (TTU) package must be installed on the platform
running the connector. The run-time environment must define the path to the Teradata
client libraries in the TTU. For Teradata ODBC support while using the load operator,
you must also define the path to the Teradata TeraGSS libraries in the TTU. To support
logging of Teradata messages, you must define the NLSPATH environment variable
appropriately. For example, with a TTU installation in /opt/teradata, define
NLSPATH as “/opt/teradata/client/version/tbuild/msg64/%N”. The
connector has been certified using TTU version 14.10.

For debugging, you can install optional PC-based Teradata client tools to access the
target database table on the Teradata server. These tools include the GUI SQL
workbench (Teradata SQL Assistant) and the DBA/Admin tool (Teradata Administrator),
which both use ODBC.

You must use one of three TPT operators to write data to a table on the server:stream,
update, or load.

334 Chapter 16 • Using Connectors

Operator Description

stream Works like a standard ESP database subscriber connector,
but with improved throughput gained through using the TPT.
Supports insert, update, and delete events. As it receives
events from the subscribed window, it writes them to the
target table. If you set the required tdatainsertonly
configuration parameter to false, serialization is
automatically enabled in the TPT to maintain correct
ordering of row data over multiple sessions.

update Supports insert/update/delete events but writes them to the
target table in batch mode. The batch period is a required
connector configuration parameter. At the cost of higher
latency, this operator provides better throughput with longer
batch periods (for example minutes instead of seconds).

load Supports insert events. Requires an empty target table.
Provides the most optimized throughput. Staggers data
through a pair of intermediate staging tables. These table
names and connectivity parameters are additional required
connector configuration parameters. In addition, the write
from a staging table to the ultimate target table uses the
generic ODBC driver used by the database connector. Thus,
the associated connect string configuration and odbc.ini file
specification is required. The staging tables are
automatically created by the connector. If the staging tables
and related error and log tables already exist when the
connector starts, it automatically drops them at start-up.

Table 16.31 Required Parameters for Teradata Connectors

Parameter Description

type Specifies to subscribe

desttablename Target table name.

tdatausername User name for the user account on the target Teradata server.

tdatauserpwd User password for the user account on the target Teradata
server.

tdatatdpid Target Teradata server name

tdatamaxsessions Maximum number of sessions created by the TPT to the
Teradata server.

tdataminsessions Minimum number of sessions created by the TPT to the
Teradata server.

tdatadriver The operator: stream, update, or load.

Using the Teradata Connector 335

Parameter Description

tdatainsertonly Specifies whether events in the subscriber event stream
processing window are insert only. Must be true when
using the load operator.

snapshot Specifies whether to send snapshot data.

Table 16.32 Optional Parameters for Teradata Connectors

Parameter Description

rmretdel Removes all delete events from event blocks received by the
subscriber that were introduced by a window retention
policy.

tdatabatchperiod Specifies the batch period in seconds. Required when using
the update operator, otherwise ignored.

stage1tablename Specifies the first staging table. Required when using the
load operator, otherwise ignored.

stage2tablename Specifies the second staging table. Required when using the
load operator, otherwise ignored.

connectstring Specifies the connect string used to access the target and
staging tables. Use the form
“DSN=dsnname;UID=userid;pwd=password”.
Required when using the load operator, otherwise ignored.

tdatatracelevel Specifies the trace level for Teradata messages written to the
trace file in the current working directory. The trace file is
named operator1.txt. Default is 1 (TD_OFF). Other valid
values are: 2 (TD_OPER), 3 (TD_OPER_CLI), 4
(TD_OPER_OPCOMMON), 5 (TD_OPER_SPECIAL), 6
(TD_OPER_ALL), 7 (TD_GENERAL), and 8 (TD_ROW).

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

Using the Tervela Data Fabric Connector
The Tervela Data Fabric connector communicates with a software or hardware-based
Tervela Data Fabric for publish and subscribe operations.

A Tervela subscriber connector receives events blocks and publishes to the following
Tervela topic:
“SAS.ENGINES.enginename.projectname.queryname.windowname.OUT.”

336 Chapter 16 • Using Connectors

A Tervela publisher connector reads event blocks from the following Tervela topic:
“SAS.ENGINES.enginename.projectname.queryname.windowname.IN” and injects
them into source windows.

As a result of the bus connectivity provided by the Tervela Data Fabric connector, the
engine does not need to manage individual publish/subscribe connections. A high
capacity of concurrent publish/subscribe connections to a single ESP engine is achieved.

You must install the Tervela run-time libraries on the platform that hosts the running
instance of the connector. The run-time environment must define the path to those
libraries (specify LD_LIBRARY_PATH on Linux platforms, for example).

The Tervela Data Fabric Connector has the following characteristics:

• It works with binary event blocks. No other event block formats are supported.

• It operates as a Tervela client. All Tervela Data Fabric connectivity parameters are
required as connector configuration parameters.

Before using Tervela Data Fabric connectors, you must configure the following items on
the Tervela TPM Provisioning and Management System:

• a client user name and password to match the connector’s tvauserid and
tvapassword configuration parameters

• the inbound and outbound topic strings and associated schema

• publish or subscribe entitlement rights associated with a client user name

When the connector starts, it publishes a message to topic SAS.META.tvaclientname
(where tvaclientname is a connector configuration parameter). This message contains the
following information:

• The mapping of the ESP engine name to a host:port field potentially used by an ESP
publish/subscribe client. The host:port string is the required urlhostport
connector configuration parameter, and is substituted by the engine name in topic
strings used on the fabric.

• The project, query, and window names of the window associated with the connector,
as well as the serialized schema of the window.

All messaging performed by the Tervela connector uses the Tervela Guaranteed Delivery
mode. Messages are persisted to a Tervela TPE appliance. When a publisher connector
connects to the fabric, it receives messages already published to the subscribed topic
over a recent time period. By default, the publisher connector sets this time period to
eight hours. This enables a publisher to catch up with a day’s worth of messages. Using
this mode requires regular purging of persisted data by an administrator when there are
no other automated mechanism to age out persisted messages.

Tervela subscriber connectors support a hot failover mode. The active/standby status of
the connector is coordinated with the fabric so that a standby connector becomes active
when the active connector fails. Several conditions must be met to guarantee successful
switchovers:

• The engine names of the ESP engines running the involved connectors must all be
identical. This set of ESP engines is called the failover group.

• All involved connectors must be active on the same set of topics.

• All involved subscriber connectors must be configured with the same
tvaclientname.

• All involved connectors must initiate message flow at the same time, and with the
TPE purged of all messages on related topics. This is required because message IDs
must be synchronized across all connectors.

Using the Tervela Data Fabric Connector 337

• Message IDs that are set by the injector of event blocks into the model must be
sequential and synchronized with IDs used by other standby connectors. When the
injector is a Tervela publisher connector, that connector sets the message ID on all
injected event blocks, beginning with ID = 1.

When a new subscriber connector becomes active, outbound message flow remains
synchronized due to buffering of messages by standby connectors and coordination of
the resumed flow with the fabric. The size of this message buffer is a required parameter
for subscriber connectors.

Tervela connector configuration parameters named tva… are passed unmodified to the
Tervela API by the connector. See your Tervela documentation for more information
about these parameters.

Use the following parameters with Tervela connectors:

Table 16.33 Required Parameters for Subscriber Tervela Connectors

Parameter Description

type Specifies to subscribe.

tvauserid Specifies a user name defined in the Tervela TPM. Publish-
topic entitlement rights must be associated with this user
name.

tvapassword Specifies the password associated with tvauserid.

tvaprimarytmx Specifies the host name or IP address of the primary TMX.

tvatopic Specifies the topic name for the topic to which to subscribed.
This topic must be configured on the TPM for the GD
service and tvauserid must be assigned the Guaranteed
Delivery subscribe rights for this Topic in the TPM.

tvaclientname Specifies the client name associated with the Tervela
Guaranteed Delivery context. If hot failover is enabled, this
name must match the tvaclientname of other
subscriber connectors in the failover group. Otherwise, the
name must be unique among all instances of Tervela
connectors.

tvamaxoutstand Specifies the maximum number of unacknowledged
messages that can be published to the Tervela fabric
(effectively the size of the publication cache). Should be
twice the expected transmit rate.

numbufferedmsgs Specifies the maximum number of messages buffered by a
standby subscriber connector. When exceeded, the oldest
message is discarded. If the connector goes active the buffer
is flushed, and buffered messages are sent to the fabric as
required to maintain message ID sequence.

urlhostport Specifies the “host/port” string sent in the metadata message
published by the connector on topic
SAS.META.tvaclientname when it starts.

338 Chapter 16 • Using Connectors

Parameter Description

snapshot Specifies whether to send snapshot data.

Table 16.34 Required Parameters for Publisher Tervela Connectors

Parameter Description

type Specifies to publish.

tvauserid Specifies a user name defined in the Tervela TPM.
Subscribe-topic entitlement rights must be associated with
this user name.

tvapassword Specifies the password associated with tvauserid.

tvaprimarytmx Specifies the host name or IP address of the primary TMX.

tvatopic Specifies the topic name for the topic to which to publish.
This topic must be configured on the TPM for the GD
service.

tvaclientname Specifies the client name associated with the Tervela
Guaranteed Delivery context. Must be unique among all
instances of Tervela connectors.

tvasubname Specifies the name assigned to the Guaranteed Delivery
subscription being created. The combination of this name
and tvaclientname are used by the fabric to replay the
last subscription state. If a subscription state is found, it is
used to resume the subscription from its previous state. If
not, the subscription is started new, starting with a replay of
messages received in the past eight hours.

urlhostport Specifies the “host:port” string sent in the metadata message
published by the connector on topic
SAS.META.tvaclientname when it starts.

Table 16.35 Optional Parameters for Subscriber Tervela Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

hotfailover Enables hot failover mode

tvasecondarytmx Specifies the host name or IP address of the secondary
TMX. Required if logging in to a fault-tolerant pair.

tvalogfile Causes the connector to log to the specified file instead of to
syslog (on Linux or Solaris) or Tervela.log (on Windows)

Using the Tervela Data Fabric Connector 339

Parameter Description

tvapubbwlimit Specifies the maximum bandwidth, in Mbps, of data
published to the fabric. The default value is 100 Mbps.

tvapubrate Specifies the rate at which data messages are published to
the fabric, in Kbps. The default value is 30,000 messages
per second.

tvapubmsgexp Specifies the maximum amount of time, in seconds, that
published messages are kept in the cache in the Tervela API.
This cache is used as part of the channel egress reliability
window (if retransmission is required). The default value is
1 second.

rmretdel Specifies to remove all delete events from event blocks
received by a subscriber that were introduced by a window
retention policy.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

protofile Specifies the .proto file that contains the Google Protocol
Buffers message definition. This definition is used to
convert event blocks to protobuf messages. When you
specify this parameter, you must also specify the
protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in
the .proto file that you specified with the protofile
parameter. Event blocks are converted into this message.

json Enables transport of event blocks encoded as JSON
messages.

Table 16.36 Optional Parameters for Publisher Tervela Connectors

Parameter Description

tvasecondarytmx Specifies the host name or IP address of the secondary
TMX. Required when logging in to a fault-tolerant pair.

tvalogfile Causes the connector to log to the specified file instead of to
syslog (on Linux or Solaris) or Tervela.log (on Windows)

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

340 Chapter 16 • Using Connectors

Parameter Description

protofile Specifies the .proto file that contains the Google Protocol
Buffers message definition. This definition is used to
convert event blocks to protobuf messages. When you
specify this parameter, you must also specify the
protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in
the .proto file that you specified with the protofile
parameter. Event blocks are converted into this message.

json Enables transport of event blocks encoded as JSON
messages.

Using the Tibco Rendezvous (RV) Connector
The Tibco Rendezvous (RV) connector supports the Tibco RV API for publish and
subscribe operations through a Tibco RV daemon. The subscriber receives event blocks
and publishes them to a Tibco RV subject. The publisher is a Tibco RV subscriber, which
injects received event blocks into source windows.

The Tibco RV run-time libraries must be installed on the platform that hosts the running
instance of the connector. The run-time environment must define the path to those
libraries (for example, specifying LD_LIBRARY_PATH on Linux platforms).

The system path must point to the Tibco/RV/bin directory so that the connector can
run the RVD daemon.

The subject name used by a Tibco RV connector is a required connector parameter. A
Tibco RV subscriber also requires a parameter that defines the message format used to
publish events to Tibco RV. The format options are CSV or binary. A Tibco RV
publisher can consume any message type produced by a Tibco RV subscriber.

By default, the Tibco RV connector assumes that a Tibco RV daemon is running on the
same platform as the connector. Alternatively, you can specify the connector
tibrvdaemon configuration parameter to use a remote daemon.

Similarly, you can specify the optional tibrvservice and tibrvnetwork
parameters to control the Rendezvous service and network interface used by the
connector. For more information, see your Tibco RV documentation.

The Tibco RV connector relies on the default multicast protocols for message delivery.
The reliability interval for messages sent to and from the Tibco RV daemon is inherited
from the value in use by the daemon.

Use the following parameters with Tibco RV connectors:

Table 16.37 Required Parameters for Subscriber Tibco RV Connectors

Parameter Description

type Specifies to subscribe.

Using the Tibco Rendezvous (RV) Connector 341

Parameter Description

tibrvsubject Specifies the Tibco RV subject name.

tibrvtype Specifies binary, CSV, or JSON.

snapshot Specifies whether to send snapshot data.

Table 16.38 Required Parameters for Publisher Tibco RV Connectors

Parameter Description

type Specifies to publish.

tibrvsubject Specifies the Tibco RV subject name.

tibrvtype Specifies binary, CSV, JSON, or opaque string.

Table 16.39 Optional Parameters for Subscriber Tibco RV Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

tibrvservice Specifies the Rendezvous service used by the Tibco RV
transport created by the connector. The default service name
is “rendezvous”.

tibrvnetwork Specifies the network interface used by the Tibco RV
transport created by the connector. The default network
depends on the type of daemon used by the connector.

tibrvdaemon Specifies the Rendezvous daemon used by the connector.
The default is the default socket created by the local
daemon.

rmretdel Specifies to remove all delete events from event blocks
received by a subscriber that were introduced by a window
retention policy.

dateformat Specifies the date format. The default value is "%Y-%m-%d
%H:%M:%S".

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

protofile Specifies the .proto file that contains the Google Protocol
Buffers message definition. This definition is used to convert
event blocks to protobuf messages. When you specify this
parameter, you must also specify the protomsg parameter.

342 Chapter 16 • Using Connectors

Parameter Description

protomsg Specifies the name of a Google Protocol Buffers message in
the .proto file that you specified with the protofile
parameter. Event blocks are converted into this message.

Table 16.40 Optional Parameters for Publisher Tibco RV Connectors

Parameter Description

blocksize Specifies the number of events to include in a published
event block. The default value is 1.

transactional Sets the event block type to transactional. The default value
is normal.

dateformat Specifies the date format. The default value is "%Y-%m-%d
%H:%M:%S".

tibrvservice Specifies the Rendezvous service used by the Tibco RV
transport created by the connector. The default service name
is “rendezvous”.

tibrvnetwork Specifies the network interface used by the Tibco RV
transport created by the connector. The default network
depends on the type of daemon used by the connector.

tibrvdaemon Specifies the Rendezvous daemon used by the connector.
The default is the default socket created by the local
daemon.

configfilesection Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters. Specify the value as [configfilesection].

ignorecsvparseerrors When a field in an input CSV event cannot be parse, insert a
null value and continue publishing.

protofile Specifies the .proto file that contains the Google Protocol
Buffers message definition. This definition is used to convert
event blocks to protobuf messages. When you specify this
parameter, you must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in
the .proto file that you specified with the protofile
parameter. Event blocks are converted into this message.

csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

noautogenfield Specifies that input events are missing the key field that is
autogenerated by the source window.

Using the Tibco Rendezvous (RV) Connector 343

Parameter Description

publishwithupsert Specifies to build events with opcode = Upsert instead of
Insert.

Writing and Integrating a Custom Connector

Writing a Custom Connector
When you write your own connector, the connector class must inherit from base class
dfESPconnector.

Connector configuration is maintained in a set of key or value pairs where all keys and
values are text strings. A connector can obtain the value of a configuration item at any
time by calling getParameter() and passing the key string. An invalid request
returns an empty string.

A connector can implement a subscriber that receives events generated by a window, or
a publisher that injects events into a window. However, a single instance of a connector
cannot publish and subscribe simultaneously.

A subscriber connector receives events by using a callback method defined in the
connector class that is invoked in a thread owned by the engine. A publisher connector
typically creates a dedicated thread to read events from the source. It then injects those
events into a source window, leaving the main connector thread for subsequent calls
made into the connector.

A connector must define these static data structures:

Static Data Structure Description

dfESPconnectorInfo Specifies the connector name, publish/subscribe
type, initialization function pointer, and
configuration data pointers.

subRequiredConfig Specifies an array of
dfESPconnectorParmInfo_t entries
listing required configuration parameters for a
subscriber.

sizeofSubRequiredConfig Specifies the number of entries in
subRequiredConfig.

pubRequiredConfig Specifies an array of
dfESPconnectorParmInfo_t entries
listing required configuration parameters for a
publisher.

sizeofPubRequiredConfig Specifies the number of entries in
pubRequiredConfig.

344 Chapter 16 • Using Connectors

Static Data Structure Description

subOptionalConfig Specifies an array of
dfESPconnectorParmInfo_t entries
listing optional configuration parameters for a
subscriber.

sizeofSubOptionalConfig Specifies the number of entries in
subOptionalConfig.

pubOptionalConfig Specifies an array of
dfESPconnectorParmInfo_t entries
listing optional configuration parameters for a
publisher.

sizeofPubOptionalConfig Specifies the number of entries in
pubOptionalConfig.

A connector must define these static methods:

Static Method Description

dfESPconnector
*initialize(dfESPengine *engine,
dfESPpsLib_t psLib)

Returns an instance of the
connector.

dfESPconnectorInfo
*getConnectorInfo()

Returns the
dfESPconnectorInfo
structure.

You can invoke these static methods before you create an instance of the connector.

A connector must define these virtual methods:

Virtual Method Description

start() Starts the connector. Must call base class
method checkConfig() to validate
connector configuration before starting. Must
also call base class method start(). Must set
variable _started = true upon
success.

stop() Stops the connector. Must call base class
method stop(). Must leave the connector in a
state whereby start() can be subsequently
called to restart the connector.

callbackFunction() Specifies the method invoked by the engine to
pass event blocks generated by the window to
which it is connected.

Writing and Integrating a Custom Connector 345

Virtual Method Description

errorCallbackFunction() Specifies the method invoked by the engine to
report errors detected by the engine. Must call
user callback function errorCallback, if
nonzero.

A connector must set its running state for use by the connector orchestrator. It does this
by calling the dfESPconnector::setState() method. The two relevant states are
state_RUNNING and state_FINISHED. All connectors must set state_RUNNING
when they start. Only connectors that actually finish transferring data need to set
state_FINISHED. Typically, setting state in this way is relevant only for publisher
connectors that publish a finite number of event blocks.

Finally, a derived connector can implement up to ten user-defined methods that can be
called from an application. Because connectors are plug-ins loaded at run time, a user
application cannot directly invoke class methods. It is not linked against the connector.

The base connector class defines virtual methods userFunction_01 through
userFunction_10, and a derived connector then implements those methods as
needed. For example:

 void * myConnector::userFunction_01(void *myData) {

An application would invoke the method as follows:

 myRC = myConnector->userFunction_01((void *)myData);

Integrating a Custom Connector
All connectors are managed by a global connector manager. The default connectors
shipped with SAS Event Stream Processing are automatically loaded by the connector
manager during product initialization. Custom connectors built as libraries and placed in
$DFESP_HOME/lib/plugins are also loaded during initialization, with the exception
of those listed in $DFESP_HOME/etc/connectors.excluded.

After initialization, the connector is available for use by any event stream processor
window defined in an application. As with any connector, an instance of it can be
obtained by calling the window getConnector() method and passing its user-defined
method. You can configure the connector using setParameter() before starting the
project.

346 Chapter 16 • Using Connectors

Chapter 17

Using Adapters

Overview to Adapters . 347

Using the Database Adapter . 349

Using the Event Stream Processor Adapter . 351

Using the File and Socket Adapter . 352

Using the IBM WebSphere MQ Adapter . 355

Using the HDAT Reader Adapter . 357

Using the HDFS (Hadoop Distributed File System) Adapter 358

Using the Java Message Service (JMS) Adapter . 361

Using the SAS LASR Analytic Server Adapter . 365

Using the PI Adapter . 367

Using the Rabbit MQ Adapter . 369

Using the REST Subscriber Adapter . 371

Using the SAS Data Set Adapter . 373

Using the SMTP Subscriber Adapter . 376

Using the Sniffer Publisher Adapter . 377

Using the Solace Systems Adapter . 379

Using the Teradata Subscriber Adapter . 381

Using the Tervela Data Fabric Adapter . 383

Using the Tibco Rendezvous (RV) Adapter . 385

Using the Twitter Publisher Adapter . 387

Overview to Adapters
Adapters are stand-alone executable files that use the publish/subscribe API to do the
following:

• publish event streams into an engine

• subscribe to event streams from engine windows

347

Many adapters are executable versions of connectors. Thus, the required and optional
parameters of most adapters directly map to the parameters of the corresponding
connector. Unlike connectors, adapters can be networked.

Adapters are written in C++ or Java.

Language Adapter

C++ Database

Event Stream Processor

File and Socket

IBM WebSphere MQ

PI

Rabbit MQ

SMTP Subscriber

Sniffer Publisher

Solace Systems

Teradata Subscriber

Tervela Data Fabric

Java HDAT Reader

HDFS (Hadoop Distributed File System)

Java Message Service (JMS)

SAS LASR Analytic Server

REST Subscriber

SAS Data Set

Twitter Publisher

Similar to connectors, adapters can obtain their configuration parameters from a file. C+
+ adapters use the configuration file $DFESP_HOME/etc/connectors.config.
Java adapters use $DFESP_HOME/etc/javaadapters.config.

You can specify a section label in the configuration file using the -C argument on the
command line when you run the adapter. For more information, see “Setting
Configuration Parameters in a File” on page 298.

All adapters can publish or subscribe using a Rabbit MQ server. Each adapter has a
configuration parameter to tell it to use the Rabbit MQ transport type. When using the
Rabbit MQ transport type, an adapter uses a code library to implement the Rabbit MQ
protocol. Adapters written in C++ use the rabbitmq-c libraries. Adapters written in
Java use dfx-esp-rabbitmq-api.jar.

You can find adapters in the following directory:

$DFESP_HOME/bin

348 Chapter 17 • Using Adapters

Using the Database Adapter
The database adapter supports publish and subscribe operations on databases using
DataDirect drivers. The adapter is certified for the following platforms:

• Oracle

• MySQL

• IBM DB2

• Greenplum

• PostgreSQL

• SAP Sybase ASE

• Teradata

• Microsoft SQL Server

• IBM Informix

• Sybase IQ

However, drivers exist for many other databases and appliances. This adapter requires
that database connectivity be available by using a Data Source Name (DSN) configured
in the odbc.ini file. The file is pointed to by the ODBCINI environment variable.

Note: The database adapter uses generic DataDirect ODBC drivers for the Teradata
platform. A separately packaged adapter uses the Teradata Parallel Transporter for
improved performance.

Subscriber usage:

dfesp_db_adapter -k sub -h url -c connectstring-t tablename
<-g gdconfig> <-l native | solace | tervela | rabbitmq>
<-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile> <-C [configfilesection]><-x commitrows><-z commitsecs>
<-q><-N maxcolbinding><-E tokenlocation>

Publisher usage:

dfesp_db_adapter -k pub —h url -c connectstring<-s selectstatement>
<-b blocksize> <-e> <-g gdconfig> <-l native | solace | tervela | rabbitmq>
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile> <-C [configfilesection]>
<-S logminerschemaowner > <-T logminertablename > <-D logminerstartdatetime>
<-O><-G><-B logminerdbname><-R><-N maxcolbinding><-E tokenlocation>

Parameter Definition

-k Specifies “sub” for subscriber use and “pub” for publisher
use

Using the Database Adapter 349

Parameter Definition

—h url Specifies the dfESP publish and subscribe standard URL in
the form "dfESP://host:port/project/
continuousquery/window.

Append ?snapshot=true |false for subscribers.

Append ?rmretdel=true | false for subscribers if
needed.

-c connectstring database connection string, in the form
"DSN=data_source_name<;uid=userid><;pwd=pas
sword>"

-t tablename Specifies the subscriber target database table.

—s selectstatement Specifies the publisher source database SQL statement.

-b blocksize Specifies the block size. The default value = 1.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. If you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration files
specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug |
info | warn | error |
fatal | off

Sets the logging level for the adapter. This is the same range
of logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call and
in the engine initialize() call.

-e Specifies that events are transactional.

—g gdconfig Specifies the guaranteed delivery configuration file.

—y logconfigfile Specifies the log configuration file.

—x commitrows Specifies the minimum number of rows to buffer.

—z commitsecs Specifies the maximum number of seconds to hold onto an
incomplete commit buffer.

-q Specifies to ignore errors when executing SQL Inserts,
Updates, or Deletes.

-C [configfilesection] Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters.

-S logminerschemaowner Specifies the schema owner for Oracle or Greenplum log
miner mode.

-O Enables Oracle log miner mode.

350 Chapter 17 • Using Adapters

Parameter Definition

-G Enables Greenplum log miner mode.

-T logminertablename Specifies the table name for Oracle or Greenplum log miner
mode.

-D
logminerstartdatetime

Specifies the start date time for Oracle or Greenplum log
miner mode. Use the following format: “dd-mmm-yyyy
hh:mm:ss”

-Blogminerdbname Specifies the gpperfmon database that contains the
queries_history table.

-R Specifies to build events with opcode = Upsert instead of
Insert.

-N maxcolbinding Specifies the maximum supported width of string columns.
The default value is 4096.

-E tokenlocation Specifies the location of the file in the local filesystem that
contains the OAuth token required for authentication by the
publish/subscribe server

Using the Event Stream Processor Adapter
The event stream processor adapter enables you to subscribe to a window and publish
what it passes into another source window. This operation can occur within a single
event stream processor. More likely it occurs across two event stream processors that are
run on different machines on the network.

No corresponding event stream processor connector is provided.

Usage:

dfesp_esp_adapter -s url –p url

Parameter Definition

-s url Specifies the subscribe standard URL in the form "dfESP://
host:port/project/contquery/window?
snapshot=true |false>?collapse=true | false"

-p url Specifies the publish standard URL in the form dfESP://
host:port/project/contquery/window

The eventblock size and transactional nature is inherited from the subscribed window.

Using the Event Stream Processor Adapter 351

Using the File and Socket Adapter
The file and socket adapter supports publish and subscribe operations on files or socket
connections that stream the following data types:

• dfESP binary

• CSV

• XML

• JSON

• syslog

• hdat

Subscriber use:

dfesp_fs_adapter -k sub - h url -f fsname-t binary | csv | xml | json | hdat
<-c period> <-s maxfilesize> <-d dateformat>
<-r rate> <-a aggrsize> <-n>
<-g gdconfig> <-l native | solace | tervela | rabbitmq>
<-j trace | debug | info | warn | error | fatal | off> <-y log_configfile> <-o hdat_filename>
<-q hdat_max_data_nodes> <-u hdfs_blocksize> <-v hdfs_numreplicas>
<-w hdat_numthreads> <-z hdat_max_stringlength><-C [configfilesection]>
<-H hdatlasrhostport> <-K hdatalasrkey> <-E tokenlocation>

Publisher use:

dfesp_fs_adapter-k pub -h url -f fsname
-t binary | csv | xml | json | syslog <-b blocksize> <-d dateformat>
<-r rate> <-m maxevents> <-e> <-i> <-p> <-n> <-g gdconfig>
<-l native | solace | tervela | rabbitmq> <-j trace | debug | info | warn | error | fatal | off>
<-y log_configfile> <-x header> <-Q> <-C [configfilesection]> <-I>
< -D csvfielddelimiter>< -A> <-O> <-F eventtype> <-R> <-E tokenlocation>

Parameter Definition

-k Specifies “sub” for subscriber use and “pub” for publisher
use

—h url Specifies the dfESP publish and subscribe standard URL in
the form dfESP://host:port/project/
continuousquery/window

Append the following for subscribers: ?snapshot=true
| false. Append the following for subscribers if needed:

• ?collapse=true | false

• ?rmretdel=true | false

—f fsname Specifies the subscriber output file, publisher input file, or
socket “host:port". Leave host blank to implement a
server.

352 Chapter 17 • Using Adapters

Parameter Definition

-t binary | csv | xml
| json | syslog | hdat

Specifies the file system type. The syslog value is valid
only for publishers. The hdat value is valid only for
subscribers.

—c period Specifies output file time (in seconds). The active file is
closed and a new active file opened with the timestamp
appended to the filename

-s maxfilesize Specifies the output file volume (in bytes). The active file is
closed and a new active file opened with the timestamp
appended to the filename.

—d dateformat Specifies the date format. The default value = %Y-%m-%d
%H:%M:%S

-r rate Specifies the requested transmit rate in events per second.

—a aggrsize Specifies, in latency mode, statistics for aggregation block
size.

—n Specifies latency mode.

-g gdconfig Specifies the guaranteed delivery configuration file.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. If you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration
files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug |
info | warn | error |
fatal | off

Set the logging level for the adapter. This is the same range
of logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

-b blocksize Set the block size. The default value = 1.

—m maxevents Specifies the maximum number of events to publish.

-e Specifies that events are transactional.

-i Reads from growing file.

-p Buffers all event blocks before publishing them.

—y logconfigfile Specifies the log configuration file.

-x header Specifies the number of header lines to ignore.

-o hdat_filename Specifies the filename to write to Hadoop Distributed File
System (HDFS).

Using the File and Socket Adapter 353

Parameter Definition

-q hdat_max_datanodes Specifies the maximum number of data nodes. The default
value is the number of live data nodes.

-u hdfs_blocksize Specifies the Hadoop Distributed File System (HDFS) block
size in MB.

-v hdfs_numreplicas Specifies the Hadoop Distributed File System (HDFS)
number of replicas. The default value is 1.

-w hdat_numthreads Specifies the adapter thread pool size. A value <= 1 means
that no data nodes are used.

-z
hdat_max_stringlength

Specifies the fixed size to use for string fields in HDAT
records. The value must be a multiple of 8.

-Q For the publisher, quiesces the project after all events are
injected into the source window.

-C [configfilesection] Specifies the name of the section in /etc/
connectors.config to parse for connection parameters.

-I When a field in an input CSV event cannot be parsed, inserts
a null value and continue publishing.

-H hdatlasrhostport Specifies the LASR Analytic Server host and port.

-K hdatlasrkey Specifies the path to TKlasrkey.sh

-D csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

-A Specifies that input events are missing the key field that is
autogenerated by the source window.

-O Prepends an opcode and comma to input CSV events. The
opcode is Insert unless -R is enabled.

-F eventtype Specifies the event type to Insert into input CSV events
(with comma). Valid values are "normal" and
"partialupdate".

-R Specifies to build events with opcode = Upsert instead of
Insert.

-E tokenlocation Specifies the location of the file in the local filesystem that
contains the OAuth token required for authentication by the
publish/subscribe server.

354 Chapter 17 • Using Adapters

Using the IBM WebSphere MQ Adapter
The IBM WebSphere MQ adapter supports publish and subscribe operations on IBM
WebSphere Message Queue systems. To use this adapter, you must install IBM
WebSphere MQ Client run-time libraries and define the environment variable
MQSERVER to specify the adapter’s MQ connection parameters.

Subscriber usage:

dfesp_mq_adapter -k sub -h url —f mqtopic-t mqtype
<-q mqqueuemanager> <d dateformat> <-g gdconfig>
<-l native | solace | tervela | rabbitmq>
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile><-C [configfilesection]>
<-a protofile> <-m protomsg> <-E tokenlocation>

Publisher usage:

dfesp_mq_adapter -k pub -h url —f mqtopic -t mqtype
—n mqsubname —s mqsubqueue <-q mqqueuemanager>
<-b blocksize> <-d dateformat> <-e> <-g gdconfig>
<-l native | solace | tervela | rabbitmq>
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile> <-C [configfilesection]> <-I>
<-a protofile> <-m protomsg>< -D csvfielddelimiter>< -A> <-R> <-E tokenlocation>

Parameter Definition

-k Specify “sub” for subscriber use and “pub” for publisher use

-h url Specify the dfESP publish and subscribe standard URL in
the form “dfESP://host:port/project/
continuousquery/window”.

Append the following for subscribers: ?snapshot=true
| false.

Append the following for subscribers if needed:

• ?collapse=true | false

• ?rmretdel=true | false

-f mqtopic Specify the MQ topic name.

-t mqtype Specify binary, CSV, or JSON. For publishers,
opaquestring is also supported.

-n mqsubname Specify the MQ subscription name.

-s mqsubqueue Specify the MQ queue name.

-q mqqueuemanager Specify the MQ queue manager name.

-b blocksize Specify the blocksize. The default value = 1.

Using the IBM WebSphere MQ Adapter 355

Parameter Definition

-d dateformat Specify the date format. The default value = %Y-%m-%d
%H:%M:%S

-e Specify that events are transactional.

—g gdconfig Specify the guaranteed delivery configuration file.

—l native | solace |
tervela | rabbitmq

Specify the transport type. If you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration
files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug |
info | warn | error |
fatal | off

Set the logging level for the adapter. This is the same range
of logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

—y logconfigfile Specify the log configuration file.

-C [configfilesection] Specify the name of the section in /etc/
connectors.config to parse for configuration
parameters.

—I When a field in an input CSV event cannot be parsed, insert
a null value and continue publishing.

-a protofile Specify the .proto file that contains the message used for
Google Protocol buffer support.

-m protomsg Specify the message itself in the .proto file that is
specified by the protofile parameter.

-D csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

-A Specifies that input events are missing the key field that is
autogenerated by the source window.

-R Specifies to build events with opcode = Upsert instead of
Insert.

-E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token required for authentication by the
publish/subscribe server.

356 Chapter 17 • Using Adapters

Using the HDAT Reader Adapter
The HDAT reader adapter resides in dfx-esp-hdatreader-adapter.jar, which
bundles the Java publisher SAS Event Stream Processing client. The adapter converts
each row in an HDAT file into an ESP event and injects event blocks into a source
window of an engine. Each event is built with an UPSERT opcode.

The number of fields in the target source window schema must match the number of
columns in the HDAT row data. Also, all HDAT column types must be numeric, except
for columns that correspond to an ESP field of type UTF8STR. In that case, the column
must contain character data.

The source Hadoop Distributed File System (HDFS) and the name of the file within the
file system are passed as required parameters to the adapter. The client target platform
must define the environment variable DFESP_HDFS_JARS. This specifies the location
of the Hadoop JAR files.

Usage:

$DFESP_HOME/bin/dfesp_hdat_publisher -u url -f hdfs -i inputfile <-b blocksize>
<-t> <-ggdconfigfile> <-l native | solace |tervela | rabbitmq> <-o severe | warning | info>
<-c [configfilesection]> <-s> <-O tokenlocation>

Parameter Definition

—u url Specifies the publish and subscribe standard URL in the
form "dfESP://host:port/project/
continuousquery/window".

—f hdfs Specifies the target file system, in the form “hdfs://
host:port”. Specifies the file system that is normally
configured in property fs.defaultFS in core-site.xml.

—i inputfile Specifies the input CSV file, in the form “/path/
filename.csv”.

—b blocksize Specifies the number of events per event block.

-t Specifies that event blocks are transactional. The default is
normal.

— d dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events.

The default values are "yyyy-MM-ddHH:mm:ss" for
ESP_DATETIME and "yyyy-MM-ddHH:mm:ss.SSS"
for ESP_TIMESTAMP.

- g gdconfigfile Specifies the guaranteed delivery configuration file for the
client.

Using the HDAT Reader Adapter 357

Parameter Definition

—l native | solace |
tervela | rabbitmq

Specifies the transport type. When you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration files
specified in “Using Alternative Transport Libraries for Java
Clients” on page 286.

-o severe | warning |
info

Specifies the application logging level.

-C [configfilesection] Specifies the name of the section in file /etc/
javaadapters.config to parse for configuration
parameters.

-s Specifies to build events with opcode = Upsert instead of
Insert.

-O tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token required for authentication by the
publish/subscribe server.

Using the HDFS (Hadoop Distributed File System)
Adapter

The HDFS adapter resides in dfx-esp-hdfs-adapter.jar, which bundles the Java
publisher and subscriber SAS Event Stream Processing clients. The subscriber client
receives event blocks and writes events in CSV format to an HDFS file. The publisher
client reads events in CSV format from an HDFS file and injects event blocks into a
source window of an engine.

The target HDFS and the name of the file within the file system are both passed as
required parameters to the adapter.

The subscriber client enables you to specify values for HDFS block size and number of
replicas. You can configure the subscriber client to periodically write the HDFS file
using the optional periodicity or maxfilesize parameters. If so configured, a
timestamp is appended to the filename of each written file.

You can configure the publisher client to read from a growing file. In that case, the
publisher runs indefinitely and publishes event blocks whenever the HDFS file size
increases.

You must define the DFESP_HDFS_JARS environment variable for the client target
platform. This variable specifies the location of the Hadoop JAR files.

Subscriber usage:

$DFESP_HOME/bin/dfesp_hdfs_subscriber -u url -f hdfs -t outputfile <-b hdfsblocksize>
<-n hdfsnumreplicas> <-m maxfilesize> <-p periodicity>
<-d dateformat> <- g gdconfigfile> <-l native | solace | tervela | rabbitmq> <-o severe | warning | info>
<-C [configfilesection]> <-O tokenlocation>

358 Chapter 17 • Using Adapters

Parameter Definition

— u url Specifies the dfESP subscribe standard URL in the form
dfESP://host:port/project/continuousquery/
window.

Append the following for subscribers: ?snapshot=true
| false.

Append the following for subscribers if needed:

• ?collapse=true | false

• ?rmretdel=true | false

—f hdfs Specifies the target file system, in the form "hdfs://
host:port”. Specifies the file system normally configured
in property fs.defaultFS in file core-site.xml.

—t outputfile Specifies the output CSV file, in the form “/path/
filename.csv”.

—b hdfsblocksize Specifies the HDFS block size in MB. The default value is
64MB.

—n hdfsnumreplicas Specifies the HDFS number of replicas. The default value is
1.

—m maxfilesize Specifies the output file periodicity in bytes.

-p periodicity Specifies the output file periodicity in seconds.

— d dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events.

The default values are "yyyy-MM-ddHH:mm:ss" for
ESP_DATETIME and "yyyy-MM-ddHH:mm:ss.SSS"
for ESP_TIMESTAMP.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. When you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration files
specified in “Using Alternative Transport Libraries for Java
Clients” on page 286.

- g gdconfigfile Specifies the guaranteed delivery configuration file for the
client.

-o severe | warning |
info

Specifies the application logging level.

-C [configfilesection] Specifies the name of the section in the file /etc/
javaadapters.config to parse for configuration
parameters.

-O tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token required for authentication by the
publish/subscribe server.

Using the HDFS (Hadoop Distributed File System) Adapter 359

Publisher usage:

$DFESP_HOME/bin/dfesp_hdfs_publisher -u url -f hdfs –i inputfile <-b blocksize>
<-t> <-d dateformat> <- g gdconfigfile>
<-l native | solace | tervela | rabbitmq> <-o severe | warning | info> <-C [configfilesection]> < -e>
< -m csvfielddelimiter> <-n > <-O tokenlocation>

Parameter Definition

—u url Specifies the publish and subscribe standard URL in the
form "dfESP://host:port/project/
continuousquery/window".

—f hdfs Specifies the target file system, in the form “hdfs://
host:port”.

—i inputfile Specifies the input CSV file, in the form “/path/
filename.csv”.

—b blocksize Specifies the number of events per event block.

-t Specifies that event blocks are transactional. The default is
normal.

— d dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events.

The default values are "yyyy-MM-ddHH:mm:ss" for
ESP_DATETIME and "yyyy-MM-ddHH:mm:ss.SSS"
for ESP_TIMESTAMP.

- g gdconfigfile Specifies the guaranteed delivery configuration file for the
client.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. When you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration files
specified in “Using Alternative Transport Libraries for Java
Clients” on page 286.

-o severe | warning |
info

Specifies the application logging level.

-C [configfilesection] Specifies the name of the section in file /etc/
javaadapters.config to parse for configuration
parameters.

-e If a field in an input CSV event cannot be parsed, insert a
null value and continue publishing.

-m csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

-n Specifies that input events are missing the key field that is
autogenerated by the source window.

360 Chapter 17 • Using Adapters

Parameter Definition

-O tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token required for authentication by the
publish/subscribe server.

Using the Java Message Service (JMS) Adapter
The Java Message Service (JMS) adapter resides in dfx-esp-jms-adapter.jar,
which bundles the Java publisher and subscriber clients. Both are JMS clients. The
subscriber client receives event blocks and is a JMS message producer. The publisher
client is a JMS message consumer and injects event blocks into a source window of an
engine.

The subscriber client requires a command line parameter that defines the type of JMS
message used to contain events. The publisher client consumes the following JMS
message types:

• BytesMessage — an Event Streams Processing event block

• TextMessage — an Event Streams Processing event in CSV or XML format

• MapMessage — an Event Stream Processing event with its field names and values
mapped to corresponding MapMessage fields

A JMS message in TextMessage format can contain an XML document encoded in a
third-party format. You can substitute the corresponding JAR file in the class path in
place of dfx-esp-jms-native.jar, or you can use the -x switch in the JMS adapter script.
Currently, dfx-esp-jms-axeda.jar is the only supported alternative.

The JMS password must be passed in unencrypted form unless —E is configured. The
encrypted version of the password can be generated using OpenSSL, which must be
installed on your system. If you have installed the SAS Event Stream Processing System
Encryption and Authentication Overlay, you can use the included OpenSSL executable.
Use the following command on the console to use OpenSSL to display your encrypted
password:

echo “jmspassword” | openssl enc -e -aes-128–cbc -a -salt-pass
pass:SASespJMSadapterUsedByUser=”jmsuserid”

When running with an alternative XML format, you must specify the JAXB JAR files in
the environment variable DFESP_JAXB_JARS. You can download JAXB from https://
jaxb.java.net.

The client target platform must connect to a running JMS broker (or JMS server) . The
environment variable DFESP_JMS_JARS must specify the location of the JMS broker
JAR files. The clients also require a jndi.properties file, which you must specify
through the DFESP_JMS_PROPERTIES environment variable. This properties file
specifies the connection factory that is needed to contact the broker and create JMS
connections, as well as the destination JMS topic or queue.

You can override the default JNDI names that are looked up by the adapter to find the
connection factory and queue or topic. Do this by configuring the jndidestname and
jndifactname adapter parameters. When the destination requires credentials, you can
specify these as optional parameters on the adapter command line.

Using the Java Message Service (JMS) Adapter 361

A sample jndi.properties file is included in the etc directory of the SAS Event Stream
Processing installation.

Subscriber usage:

$DFESP_HOME/bin/dfesp_jms_subscriber -u url -m BytesMessage | TextMessage | MapMessage
<-i jmsuserid> <-p jmspassword><-x native | axeda><-d dateformat> <- g gdconfigfile>
<-l native | solace | tervela | rabbitmq> <-o severe | warning | info> <-c [configfilesection]>
<-f protofile> <-r protomsg> <-j jndidestname> <-a jndifactname> <-O tokenlocation> <-E>

Parameter Definition

— u url Specifies the dfESP subscribe standard URL in the form
dfESP://host:port/project/
continuousquery/window.

Append the following for subscribers: ?snapshot=true
| false.

Append the following for subscribers if needed:

• ?collapse=true | false

• ?rmretdel=true | false

— d dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events.

The default values are "yyyy-MM-ddHH:mm:ss" for
ESP_DATETIME and "yyyy-MM-ddHH:mm:ss.SSS"
for ESP_TIMESTAMP.

-m BytesMessage |
TextMessage |
Mapmessage

Specifies the JMS message type.

-i jmsuserid Specifies the user ID for the JMS destination.

-p jmspassword Specifies the password for the JMS destination.

-x native | axeda Specifies the XML format for TextMessage. Specifies
native when the message is in CSV format.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. When you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration
files specified in “Using Alternative Transport Libraries for
Java Clients” on page 286.

- g gdconfigfile Specifies the guaranteed delivery configuration file for the
client.

-o severe | warning |
info

Specifies the application logging level.

-c [configfilesection] Specifies the name of the section of /etc/
javaadapters.config to parse for configuration
parameters.

362 Chapter 17 • Using Adapters

Parameter Definition

-f protofile Specifies the .proto file that contains the message used for
Google Protocol buffer support.

-r protomsg Specifies the message itself in the .proto file that is
specified by the protofile parameter.

-j jndidestname Specifies the JNDI name to look up for the JMS destination.
The default value is “jmsDestination”. This option
overrides settings in jndi.properties.

-a jndifactname Specifies the JNDI name to look up for the JMS connection
factory. The default value is “ConnectionFactory”.
This option overrides settings in jndi.properties.

-O tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token required for authentication by the
publish/subscribe server.

-E Specifies that the JMS password is encrypted.

Publisher usage:

$DFESP_HOME/bin/dfesp_jms_publisher -u url <-b blocksize><-i jmsuserid>
<-p jmspassword> <-x native | axeda><-t> <-d dateformat> <- g gdconfigfile>
<-l native | solace | tervela | rabbitmq> <-o severe | warning | info> <-c [configfilesection]> <-e>
<-f protofile> <-r protomsg> <-j jndidestname> <-a jndifactname>
< -m csvfielddelimiter> <-q> <-n > <-s> <-O tokenlocation> <-E>

Parameter Definition

—u url Specifies the publish and subscribe standard URL in the
form "dfESP://host:port/project/
continuousquery/window"

—b blocksize Specifies the number of events per event block.

-i jmsuserid Specifies the user ID for the JMS destination.

-p jmspassword Specifies the password for the JMS destination.

-x native | axeda Specifies the XML format for TextMessage. Specifies
native when the message is in CSV format.

-t Specifies that event blocks are transactional. The default is
normal.

— d dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events.

The default values are "yyyy-MM-ddHH:mm:ss" for
ESP_DATETIME and "yyyy-MM-ddHH:mm:ss.SSS"
for ESP_TIMESTAMP.

Using the Java Message Service (JMS) Adapter 363

Parameter Definition

- g gdconfigfile Specifies the guaranteed delivery configuration file for the
client.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. When you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration
files specified in “Using Alternative Transport Libraries for
Java Clients” on page 286

-o severe | warning |
info

Specifies the application logging level.

-c [configfilesection] Specifies the name of the section in /etc/
javaadapters.config to parse for configuration
parameters.

-e When a field in an input CSV event cannot be parsed, inserts
a null value and continue publishing.

-f protofile Specifies the .proto file that contains the message used for
Google Protocol buffer support.

-r protomsg Specifies the message itself in the .proto file that is
specified by the protofile parameter.

-j jndidestname Specifies the JNDI name to look up for the JMS destination.
The default value is “jmsDestination”. This option
overrides settings in jndi.properties.

-a jndifactname Specifies the JNDI name to look up for the JMS connection
factory. The default value is “ConnectionFactory”.
This option overrides settings in jndi.properties.

-m csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

-q Specifies that a received JMS string message should be
treated as an opaque string.

-n Specifies that input events are missing the key field that is
autogenerated by the source window.

-s Specifies to build events with opcode = Upsert instead of
Insert.

-O tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token required for authentication by the
publish/subscribe server.

-E Specifies that the JMS password is encrypted.

364 Chapter 17 • Using Adapters

Using the SAS LASR Analytic Server Adapter
The SAS LASR Analytic Server adapter supports publish and subscribe operations on
the SAS LASR Analytic Server.

Note: Running this adapter in a UNIX environment requires the installation of an SSH
client.

Note: Running this adapter in a Microsoft Windows environment requires the
installation of the SAS Event Stream Processing System Encryption and
Authentication Overlay.

Note: When the SAS LASR Analytic Server is running in SMP mode, the LASR
adapter must be running on the same computer system.

Subscriber usage:

dfesp_lasr_adapter -k sub -h url1<, url2,...urlN> -H lasrurl -t table -X tklasrkeypath
<-s tabschema | —a obstoanalyze> <-d dformat> <-A commit> <-S true | false>
<-b blocksize> <-n true | false> <-l loglevel> <-z bufsize>
<-C [configfilesection]> <-g gdconfigfile> <-L native | solace | tervela | rabbitmq>
<-O tokenlocation>

Publisher usage:

dfesp_lasr_adapter -k pub -h url1<, url2,...urlN> -H lasrurl -t table -X tklasrkeypath
<-S true | false> <-d dformat> <-e true | false> <-E true | false> <-b blocksize>
<-l loglevel> <-q action | —Q action> <-z bufsize><-C [configfilesection]>
<-g gdconfigfile> <-L native | solace | tervela | rabbitmq> <-u true | false>
<-O tokenlocation>

Parameter Description

-k sub | pub Specifies subscribe or publish.

-h url Specifies the publish and subscribe standard URL in the
form dfESP://host:port/project/
continuousquery/window.

You must append the following for subscribers: ?
snapshot=true | false.

Append the following for subscribers if needed: ?
collapse=true | false?rmretdel=true
| false.

Note: You can specify multiple URLs.

-H lasrurl Specifies the SAS LASR Analytic Server URL in the
form “host:port”.

-t table Specifies the full name of the LASR table.

-X tklasrkeypath Specifies the path to tklasrkey.shfor Linux or
tklasrkey.bat for Microsoft Windows.

Using the SAS LASR Analytic Server Adapter 365

Parameter Description

-s tabschema Specifies the explicit SAS LASR Analytic Server schema
in the form
“rowname1:sastype1:sasformat1:label1,...rownameN:sast
ypeN:sasformatN:labelN.

Note: When you omit the sasformat, no SAS format is
applied to the row. When you omit the label, no label is
applied to the row. If you previously specified -a, this
option is ignored.

-a obstoanalyze Specifies the number of observations to analyze in order
to define the output SAS LASR Analytic Server structure.
The default value is 4096. When you specify -s, this
option is ignored.

-d dformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events.

The default values are "yyyy-MM-ddHH:mm:ss" for
ESP_DATETIME and "yyyy-MM-ddHH:mm:ss.SSS"
for ESP_TIMESTAMP.

-A commit Specifies the number of observations to commit to the
server. A value < 0 specifies the time in seconds between
auto-commit operations. A value > 0 specifies the number
of records that, after reached, forces an auto-commit
operation. A value of 0 specifies no auto-commit
operation. The default value is 0.

-S true | false Specifies whether to observe strict SAS LASR Analytic
Server adapter schema.

-b blocksize For a subscriber, specifies the buffer size (number of
observations) to be flushed to the server. For a publisher,
specifies the event block size to be published to a source
window. The default is 1.

-n true | false Specifies whether to create-recreate a LASR table.

-l loglevel Specifies the Java standard logging level. Valid values are
OFF | SEVERE | WARNING | INFO | CONFIG |
FINE | FINER | FINEST | ALL. The default value
is INFO.

-z bufsize Specifies the socket buffer size.

-C [configfilesection] Specifies the name of a section in /etc/
javaadapters.config to parse for configuration
parameters.

-e true | false Specifies whether event blocks are transactional. If
false, event blocks are normal. The default value is
false.

366 Chapter 17 • Using Adapters

Parameter Description

-E true | false For a publisher, specify whether the adapter fetches all
data from the LASR table. When false, data is cached.

-q action For a publisher, specify the action to get results from the
LASR table. For example, specify —q “fetch
field1 / to=100 where field2=2”.

-Q action For a publisher, specify the action to get cached results
from the LASR table. For example, specify —q “fetch
field1 / to=100 where field2=2”.

-L native | solace |
tervela | rabbitmq

Specifies the transport type. When you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration files
specified in “Using Alternative Transport Libraries for
Java Clients” on page 286.

-g gdconfig Specifies the guaranteed delivery configuration file.

-u true | false When true, specifies to build events with opcode =
Upsert instead of Insert. The default value is false.

—O tokenlocation Specifies the location of the file in the local file system
that contains the OAuth token that is required for
authentication by the publish/subscribe server.

Using the PI Adapter
The PI adapter supports publish and subscribe operations against a PI Asset Framework
(PI) server. You must install the PI AF Client from OSISoft in order to use the adapter.

Subscriber usage:

dfesp_pi_adapter -k sub -h url -s afelement<-t> <-p pisystem><-d afdatabase>
<-r afrootelement><-a afattribute><-g gdconfig><-l native | solace | tervela | rabbitmq>
<-j trace | debug | info | warn | error | fatal> <-y logconfigfile> <-C [configfilesection]>
<-E tokenlocation>

Publisher usage:

dfesp_pi_adapter -k pub-h url -s afelement<-t> <-p pisystem><-d afdatabase><-r afrootelement>
<-a afattribute><-c><-b blocksize> <-e><-g gdconfig> <-l native | solace | tervela | rabbitmq>
<-j trace | debug | info | warn | error | fatal> <-y logconfigfile> <-C [configfilesection]> <-R>
<-E tokenlocation>

Parameter Definition

-k Specifies sub for subscriber use and pub for publisher use

Using the PI Adapter 367

Parameter Definition

-h url Specifies the dfESP publish and subscribe standard URL in
the form dfESP://host:port/project/
continuousquery/window .

Append the following for subscribers: ?snapshot=true
| false.

Append the following for subscribers if needed: ?
collapse=true | false?rmretdel=true |
false.

-s afelement Specifies the AF element or element template name.
Wildcards are supported.

-t Specifies that afelement is the name of an element template.

-p pisystem Specifies the PI system.

—d afdatabase Specifies the AF database

—r afrootelement Specifies a root element in the AF hierarchy from which to
search for afelement.

-a afattribute Specifies an attribute in afelement and ignore other attributes
there.

-b blocksize Specifies the block size. The default value is 1.

-c archivetimestamp Specifies that when connecting to the AF server, retrieve all
archived values from the specified timestamp onwards.

—e Specifies that events are transactional.

—g gdconfig Specifies the guaranteed delivery configuration file.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. If you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration
files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

-j trace | debug |
info | warn | error |
fatal | off

Set the logging level for the adapter. This is the same range
of logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

—y logconfigfile Specifies the log configuration file.

-C [configfilesection] Specifies the name of the section of /etc/
connectors.config to parse for configuration
parameters.

368 Chapter 17 • Using Adapters

Parameter Definition

-R Specifies to build events with opcode = Upsert instead of
Insert.

—E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server.

Using the Rabbit MQ Adapter
The Rabbit MQ adapter supports publish and subscribe operations on a Rabbit MQ
server. You must install the rabbitmq-c V0.5.2 client run-time libraries to use the
adapter.

Subscriber usage:

dfesp_rmq_adapter -k sub -h url -u rmquserid -p rmqpassword -s rmqhost
-r rmqport -v rmqexchange -t rmqtopic -z binary | csv | json
-o urlhostport -n numbufferedmsgs <-d dateformat> <-x > <-f protofile> <-m protomsg>
<-g gdconfig> <-l native | solace | tervela | rabbitmq> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile> <-C configfilesection> <-w never | once | pereventblock> <-c>
<-E tokenlocation>

Publisher usage:

dfesp_rmq_adapter -k pub -h url -u rmquserid -p rmqpassword -s rmqhost -r rmqport
-v rmqexchange -t rmqtopic -z binary | csv | json | opaquestring
-o urlhostport < -x > <-d dateformat> <-f protofile> <-m protomsg>
<-g gdconfig > <-l native | solace | tervela | rabbitmq> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile> <-C configfilesection> <-b blocksize> <-e > <-I > <-q buspersistencequeue>
< -a ackwindow> <-i acktimer> -<D csvfielddelimiter> <-A> <-R> <-E tokenlocation>

Parameter Definition

-k Specifies sub for subscriber or pub for
publisher.

— h url Specifies the dfESP subscribe standard URL
in the form dfESP://host:port/
project/continuousquery/
window.

Append the following for subscribers: ?
snapshot=true | false.

Append the following for subscribers if
needed:

• ?collapse=true | false

• ?rmretdel=true | false

-u rmquserid Specifies the Rabbit MQ user name.

Using the Rabbit MQ Adapter 369

Parameter Definition

-p rmqpassword Specifies the Rabbit MQ password.

-s rmqhost Specifies the Rabbit MQ host.

-r rmqport Specifies the Rabbit MQ port.

-v rmqexchange Specifies the Rabbit MQ exchange.

-t rmqtopic Specifies the Rabbit MQ routing key.

—z binary | csv | json |
opaquestring

Specifies the message format.
opaquestring is valid only for publishers.

-o urlhostport Specifies the host:port field in the metadata
topic to which the connector subscribes.

-x Use durable queues and persistent messages.

-d dateformat Specifies the date format. The default value is
%Y-%m-%d %H:%M:%S.

-f protofile Specifies the .proto file to be used for
Google protocol buffer support.

-m protomsg Specifies the message itself in the .proto
file that is specified by the protofile
parameter.

-g gdconfig Specifies the guaranteed delivery
configuration file.

-l native | solace | tervela |
rabbitmq

Specifies the publish/subscribe transport. The
default is native.

-j trace | debug | info | warn |
error | fatal | off

Specifies the logging level. The default is
warn.

-y logconfigfile Specifies the logging configuration file. By
default, there is none.

-C configfilesection Specifies the name of the section in /etc/
connectors.config to parse for
configuration parameters, in the form
[section].

-n numbufferedmsgs Specifies the maximum number of messages
buffered by a standby subscriber connector.

370 Chapter 17 • Using Adapters

Parameter Definition

-w never | once | pereventblock Specifies when to pass the window schema to
every subscriber callback. The default value is
never. When rmqtype=CSV, prepend
output CSV data with the window’s serialized
schema.

-b blocksize Specifies event block size. The default is 1.

-c Specifies to use the client message ID instead
of an internal message ID to synchronize
traffic during failover.

-e Specifies that events are transactional.

-l Insert a null value into fields that fail CSV
parsing, and then continue.

-q buspersistencequeue Specifies the queue name used by a persistent
publisher.

-D csvfielddelimiter Specifies the character delimiter for field data
in input CSV events. The default delimiter is
the , character.

-a ackwindow Specifies the time period to leave
unacknowledged messages received from
Rabbit MQ when buspersistence is
enabled.

-i acktimer Specifies the time interval for how often to
check whether to send acknowledgments that
are triggered by the ackwindow parameter.

-A Specifies that input events are missing the key
field that is autogenerated by the source
window.

-R Specifies to build events with opcode = Upsert
instead of Insert.

—E tokenlocation Specifies the location of the file in the local
file system that contains the OAuth token that
is required for authentication by the publish/
subscribe server.

Using the REST Subscriber Adapter
The REST adapter supports subscribe operations to generate HTTP POST requests to a
configured REST service. For each subscribed event, the adapter formats a JSON string

Using the REST Subscriber Adapter 371

that uses all fields of the event. It then forwards the JSON through an HTTP POST to the
REST service that is configured in the adapter parameter resturl. You can also
configure the HTTP Content-Type and the number of retries when an HTTP POST fails.

The HTTP response can be forwarded to an unrelated source window. This requires
building an event from the JSON formatted response and forwarding it to the ESP URL
that is configured in the esprespurl adapter parameter. When the JSON response
includes an array, a new event is built and published for each array entry, with non-array
fields unchanged.

Any field names in the subscribed window schema that contain an underscore are
converted into a nested JSON field. For example, field name foo_bar produces the
following JSON: "foo":{"bar":"value". The field name foobar produces the
following JSON: "foobar":"value".

The response event fields are appended to the fields in the original subscribed event.
Thus, you must be careful to ensure that the beginning fields in the schema of the source
window in esprespurl exactly match the complete schema of the subscribed window.
Also, the response fields must follow the beginning fields.

Each HTTP request-response action is run in a separate adapter thread. In this way,
adapter memory usage does not grow with queued subscribed events waiting
synchronously for the previous request-response to complete.

Usage:

dfesp_rest_subscriber -u url -r resturl -t httpcontenttype <-e esprespurl> <-p httpretries>
<-d dateformat> <- g gdconfigfile> <-l native | solace | tervela | rabbitmq>
<-o severe | warning | info> <-c [configfilesection]> <-O tokenlocation><-m maxnumthreads>

Parameter Definition

-u url Specifies the dfESP publish and subscribe standard URL in
the form "dfESP://host:port/project/
contquery/window".

Append the following for subscribers: ?snapshot=true
| false.

Append the following for subscribers if needed: ?
collapse=true | false ?rmretdel=true |
false

-r resturl Specifies the URL of the target REST service.

-t httpcontenttype Specifies the value of the Content-Type string used in the
HTTP post.

-e esprespurl Specifies the publish/subscribe standard URL to which
responses should be published.

-p httpretries Specifies the number of times to retry a failed HTTP post.
The default value is 0.

-d dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events.

The default values are "yyyy-MM-ddHH:mm:ss" for
ESP_DATETIME and "yyyy-MM-ddHH:mm:ss.SSS" for
ESP_TIMESTAMP.

372 Chapter 17 • Using Adapters

Parameter Definition

-l native | solace |
tervela | rabbitmq

Specifies the transport type. If you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration files
specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

- g gdconfigfile Specifies the guaranteed delivery configuration file for the
client.

-o severe | warning |
info

Specifies the application logging level.

-C [configfilesection] Specifies the name of the section in /etc/
javaadapters.config to parse for connection
parameters.

—O tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server.

—m maxnumthreads Specifies the maximum number of threads used by the
adapter. This limits the number of concurrent connections to
the REST service. The default value is unlimited.

Using the SAS Data Set Adapter
The SAS data set adapter resides in dfx-esp-dataset-adapter.jar, which bundles the Java
publisher and subscriber SAS Event Stream Processing clients.

The adapter uses SAS Java Database Connectivity (JDBC) to connect to a SAS
Workspace Server. This SAS Workspace Server manages reading and writing of the data
set. The SAS data set name and SAS Workspace Server user credentials are passed as
required parameters to the adapter.

The SAS JDBC requires the log4j.jar for logging. Configure the value of the
DFESP_LOG4J_JAR environment variable to be the path to log4j.jar.

The user password must be passed in encrypted form unless —w true is configured.
The encrypted version of the password can be generated by using OpenSSL, which must
be installed on your system. If you have installed the SAS Event Stream Processing
System Encryption and Authentication Overlay, you can use the included OpenSSL
executable.

Use the following command on the console to invoke OpenSSL to display your
encrypted password:

echo “password” | openssl enc -e -aes-128–cbc -a -salt
-pass pass:SASespDSadapterUsedByUser=”userid”

The subscriber client receives event blocks and appends corresponding rows to the SAS
data set. It also supports Update and Delete operations on the data set. The data set is

Using the SAS Data Set Adapter 373

created by the Workspace Server on its local file system, so the data set name must
comply with these SAS naming rules:

• The length of the names can be up to 32 characters.

• Names must begin with a letter of the Latin alphabet (A–Z, a–z) or the underscore.
Subsequent characters can be letters of the Latin alphabet, numerals, or underscores.

• Names cannot contain blanks or special characters except for the underscore.

• Names can contain mixed-case letters. SAS internally converts the member name to
uppercase.

You can explicitly specify the data set schema using the –s option. You can use the –a
switch to specify a number of received events to analyze and to extract an appropriate
row size for the data set before creating data set rows. One or the other switch must be
present.

You can also configure the subscriber client to periodically write a SAS data set using
the optional periodicity or maxnumrows parameters. If so configured, a timestamp
is appended to the filename of each written file. Be aware that Update and Delete
operations are not supported if periodicity or maxnumrows is configured, because
the referenced row might not be present in the currently open data set.

If you have configured a subscriber client with multiple ESP URLs, events from
multiple windows in multiple models are aggregated into a single output data set. In this
case, each subscribed window must have the same schema. Also, the order in which
rows are appended to the data set is not guaranteed.

The publisher client reads rows from the SAS data set, converts them into ESP events
with opcode = upsert, and injects event blocks into a source window of an engine.
If you configure a publisher client with multiple ESP URLs, each generated event block
is injected into multiple ESP source windows. Each source window must have the same
schema.

Subscriber usage:

$DFESP_HOME/bin/dfesp_dataset_adapter -k sub -h url1…urlN
-f dsname -d wssurl -u username -x password <-s dsschema | —a obstoanalyze>
<-p periodicity> <-m maxnumrows> <-l loglevel> <-g gdconfigN> <-z bufsize>
<—C configfilesection> <-g gdconfigfile> <-L native | solace | tervela | rabbitmq>
<-w true | false> <-O tokenlocation>

Publisher usage:

$DFESP_HOME/bin/dfesp_dataset_adapter -k pub -h url1…urlN
-f dsname -d wssurl -u username -x password <-e true | false><-b blocksize>
<-l loglevel> <-g gdconfigN> <-z bufsize> <—C configfilesection><-q sqlquery>
<-g gdconfigfile> <-L native | solace | tervela | rabbitmq> <-r true | false> <-w true | false>
<-O tokenlocation>

Parameter Definition

-k pub | sub Specifies a publisher or a subscriber.

374 Chapter 17 • Using Adapters

Parameter Definition

-h url Specifies one or more standard dfESP URLs in the following
form:

dfESP://host:port/project/continuousquery/
window

Append the following to the URL for subscribers: ?
snapshot=true | false

Append the following for subscribers if needed: ?
collapse=true | false?rmretdel=true | false

-f dsname Specifies the subscriber output file or publisher input file.
Specifies a full name with the extension.

-d wssurl Specifies the SAS Workspace Server connection URL in the
form “host:port”.

-u username Specifies the SAS Workspace Server user name.

-x password Specifies the SAS Workspace Server password. When —w
true is configured, this password must be encrypted.

-s dsschema Specifies the output data set schema in the following form:

“rowname1:sastype1:sasformat1:label1,...,ro
wnameN:sastypeN:sasformatN:labelN

Note: If you omit sasformatX, then no SAS format is
applied to the row. If you omit labelX, then no label is
applied to the row. If you had previously specified the -a
option, this option is ignored.

—a obstoanalyze Specifies the number of observations to analyze to define the
output SAS data set structure. Default value is 4096. If you
had previously specified the -s option, this option is
ignored.

—m maxnumrows Specifies the output file periodicity in number of rows.
Invalid if data is not insert-only.

—p periodicity Specifies the output file periodicity in seconds. Invalid if
data is not insert-only.

— b blocksize For a subscriber, specify the number of event blocks to be
appended to the data set at once. For a publisher, specify the
event block size to be published to the ESP source window.
Default value is 1.

—e true | false When true, event blocks are transactional. Otherwise, they
are normal. The default is false.

-l loglevel Specifies the Java standard logging level. Use one of the
following values: OFF | SEVERE | WARNING | INFO
| CONFIG | FINE | FINER | FINEST | ALL.
Default value is INFO.

Using the SAS Data Set Adapter 375

Parameter Definition

-C [configfilesection] Specifies the name of the section in file /etc/
javaadapters.config to parse for configuration
parameters.

-z bufsize Specifies the socket buffer size.

-q sqlquery Specifies an SQL query to get SAS data set content. For
example: "select * from dataset”.

Note: Use the dataset specified for the -f option without an
extension.

-g gdconfig Specifies the guaranteed delivery configuration file.

-L native | solace |
tervela | rabbitmq

Specifies the transport type. When you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration files
specified in “Using Alternative Transport Libraries for Java
Clients” on page 286.

-r true | false When true, specifies to build events with opcode = Upsert
instead of Insert. The default value is false.

-w true | false When true, specifies that the configured SAS Workspace
Server password is unencrypted. The default value is false.

-O tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server

Using the SMTP Subscriber Adapter
The SMTP subscriber adapter is subscriber only. Publishing to a source window is not
supported. This adapter forwards subscribed event blocks or single events as e-mail
messages to a configured SMTP server, with the event data in the message body encoded
in CSV format.

Subscriber use:

dfesp_smtp_adapter-h url-m smtpserver -u sourceaddress
-d destaddress <-p> <-g gdconfig> <-l native | solace | tervela | rabbitmq>
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile><-C [configfilesection]>
<-E tokenlocation>

376 Chapter 17 • Using Adapters

Parameter Definition

-h url Specifies the dfESP subscribe standard URL in the form
"dfESP://host:port/project/
continuousquery/window?snapshot=true |
false.

You can append the following if needed:

• ?collapse=true | false

• ?rmretdel=true | false

-p Specifies that each e-mail contains a single event instead of a
complete event block containing one or more events.

-g Specifies the guaranteed delivery configuration file.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. If you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration files
specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug |
info | warn | error |
fatal | off

Set the logging level for the adapter. This is the same range
of logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call and
in the engine initialize() call.

-y logconfigfile Specifies the log configuration file.

-C [configfilesection] Specifies the name of the section in /etc/
connectors.config to parse for connection parameters.

-m smtpserver Specifies the SMTP server name.

-u sourceaddress Specifies the source email address.

-d destaddress Specifies the destination email address

-E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server

Using the Sniffer Publisher Adapter
The sniffer adapter supports publish operations of events that are created from packets
captured from a local network interface in promiscuous mode. You must install the
libpcap run-time libraries in order to use this adapter.

Publisher use:

Using the Sniffer Publisher Adapter 377

dfesp_sniffer_adapter -h url -i interface -p protocol -f packetfields <-g gdconfig>
<-l native | solace | tervela | rabbitmq> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile> <-C configfilesection> <-b blocksize> <-e > <-t>
<-d vendorID> <-v vendorType> <-n indexfieldname> <-F pcapfilter><-R> <-E tokenlocation>

Parameter Definition

-h url Specifies the dfESP publish and subscribe standard URL in
the form "dfESP://host:port/project/
contquery/window".

-i interface Specifies the name of the network interface on the local
machine from which to capture packets.

-p protocol Specifies the port number associated with the protocol type
of packets to be captured.

-f packetfields Specifies a list of fields to be extracted from captured
packets. You must specify "payload:string" when the
protocol type is not 80 (http) or 1813 (radius).

-g gdconfig Specifies the name of the guaranteed delivery configuration
file.

-l native | solace |
tervela | rabbitmq

Specifies the publish/subscribe transport. When you specify
solace, tervela, or rabbitmq transports instead of the
default native transport, use the required client
configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

-j trace | debug | info
| warn | error | fatal
| off

Specifies the logging level. The default is warn.

-y logconfigfile Specifies the name of the logging configuration file. The
default is none.

-C configfilesection Specifies the name of section in /etc/
connectors.config to parse for configuration
parameters, in the form "[section]"

-b blocksize Specifies the event block size. The default value is 1.

-e Specifies that events are transactional.

-t Specifies to append an ESP_TIMESTAMP field to each
published event.

-d vendorID Specifies the vendor ID field to match when capturing the
Attribute-Specific field in a Vendor-Specific attribute in a
Radius Accounting-Request packet.

-v vendorType Specifies the vendor type filed to match when capturing the
Attribute-Specific field in a Vendor-Specific attribute in a
Radius Accounting-Request packet.

378 Chapter 17 • Using Adapters

Parameter Definition

-n indexfieldname Specifies the name to use instead of index for the
index:int65 field in the source window schema.

-F pcapfilter Specifies a filter expression as defined in the pcap
documentation. The value is passed to the pcap driver in
order to filter packets received by the adapter.

-R Specifies to build events with opcode = Upsert instead of
Insert.

-E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server

Using the Solace Systems Adapter
The Solace Systems adapter supports publish and subscribe operations on a hardware-
based Solace fabric. You must install the Solace run-time libraries to use the adapter.

Subscriber usage:

dfesp_sol_adapter -k sub -h url -u soluserid
—p solpassword —v solvpn —t soltopic
—o urlhostport -n numbufferedmsgs <-b > <-g gdconfig>
<-l native | solace | tervela | rabbitmq> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile> <-f protofile> <-m protomsg> <-C [configfilesection]>
<-E tokenlocation>

Publisher usage:

dfesp_sol_adapter -k pub -h url -u soluserid
—p solpassword —v solvpn —t soltopic
—o urlhostport <-b > <-q buspersistencequeue><-g gdconfig>
<-l native | solace | tervela | rabbitmq> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile> <-f protofile> <-m protomsg> <-C [configfilesection]>
<-E tokenlocation>

Parameter Definition

-k Specifies “sub” for subscriber use and “pub” for publisher
use

Using the Solace Systems Adapter 379

Parameter Definition

-h url Specifies the dfESP publish and subscribe standard URL in
the form "dfESP://host:port/project/
continuousquery/window”.

Append the following for subscribers: ?snapshot=
true | false.

Append the following for subscribers if needed:

• ?collapse= true | false

• ?rmretdel=true | false

-u soluserid Specifies the Solace user name.

-p solpassword Specifies the Solace password.

-s solhostport Specifies the Solace host:port.

-v solvpn Specifies the Solace VPN name.

-t soltopic Specifies the Solace topic.

-o urlhostport Specifies the host:port field in the metadata topic subscribed
to by the connector.

—n numbufferedmsgs Specifies the maximum number of messages buffered by a
standby subscriber connector.

—g gdconfig Specifies the guaranteed delivery configuration file.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. If you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration
files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug |
info | warn | error |
fatal | off

Sets the logging level for the adapter. This is the same range
of logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

—y logconfigfile Specifies the log configuration file.

-b Use Solace Guaranteed Messaging. By default, Solace
Direct Messaging is used.

—q buspersistencequeue Specifies the queue name used by Solace Guaranteed
Messaging publisher.

-f protofile Specifies the .proto file that contains the message used for
Google Protocol buffer support.

380 Chapter 17 • Using Adapters

Parameter Definition

-m protomsg Specifies the message itself in the .proto file that is
specified by the protofile parameter.

-C [configfilesection] Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters.

-E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server

Using the Teradata Subscriber Adapter
The Teradata adapter supports subscribe operations against a Teradata server, using the
Teradata Parallel Transporter for improved performance. You must install the Teradata
Tools and Utilities (TTU) to use the adapter.

Note: A separate database adapter uses generic DataDirect ODBC drivers for the
Teradata platform. For more information, see “Using the Database Adapter” on page
349.

Usage:

dfesp_tdata_adapter -h url -d stream | update | load -u username -x userpwd -t tablename
-s servername -a maxsessions -n minsessions -i true | false <-b batchperiod>
<-q stage1table> <-r stage2table> <-c connectstring> <-z tracelevel>
<-g gdconfig> <-l native | solace | tervela | rabbitmq> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile> <-C [configfilesection]> <-E tokenlocation>

Parameter Description

-h url Specifies the dfESP publish and subscribe standard URL in
the form dfESP://host:port/project/
continuousquery/window?snapshot=true |
false".

Append ?collapse=true | false for subscribers if
needed.

Append ?rmretdel=true | false for subscribers if
needed.

-d stream | update |
load

Specifies the Teradata operator. For more information about
these operators, see the documentation provided with the
Teradata Tools and Utilities.

-d username Specifies the Teradata user name.

-x userpwd Specifies the Teradata user password.

-t tablename Specifies the name of the target table on the Teradata server.

Using the Teradata Subscriber Adapter 381

Parameter Description

-s servername Specifies the name of the target Teradata server.

-a maxsessions Specifies the maximum number of sessions on the Teradata
server. A Teradata session is a logical connection between
an application and Teradata Database. It allows an
application to send requests to and receive responses from
Teradata Database. A session is established when Teradata
Database accepts the user name and password of a user.

-n minsessions Specifies the minimum number of sessions on the Teradata
server.

-i Specifies that the subscribed window contains insert-only
data.

-b batchperiod Specifies the batch period in seconds. This parameter is
required when -d specifies the update operator.

-q stage1table Specifies the name of the first staging table on the Teradata
server. This parameter is required when -d specifies the
load operator.

-r stage2table Specifies the name of the second staging table on the
Teradata server. This parameter is required when -d
specifies the load operator.

-c connectstring Specifies the connect string to be used by the ODBC driver
to access the staging and target tables on the Teradata server.
Use the form
“DSN=dsnname;uid=userid;pwd=password. This
parameter is required when -d load.

-z tracelevel Specifies the trace level for Teradata messages written to the
trace file in the current working directory. The trace file is
named operator1.txt. Default value is 1 (TD_OFF). Other
valid values are: 2 (TD_OPER), 3 (TD_OPER_CLI), 4
(TD_OPER_OPCOMMON), 5 (TD_OPER_SPECIAL), 6
(TD_OPER_ALL), 7 (TD_GENERAL), and 8 (TD_ROW).

-g gdconfig Specifies the guaranteed delivery configuration file.

-l native | solace |
tervela | rabbitmq

Specifies the transport type. If you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration files
specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

-j trace | debug | info
| warn | error | fatal
| off

Set the logging level for the adapter. Use the same range of
logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call or
in the engine initialize() call.

-y logconfigfile Specifies the log configuration file.

382 Chapter 17 • Using Adapters

Parameter Description

-C [configfilesection] Specifies the name of the section in /etc/
connectors.config to parse for configuration
parameters.

-E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server

Using the Tervela Data Fabric Adapter
The Tervela adapter supports publish and subscribe operations on a hardware-based or
software-based Tervela fabric. You must install the Tervela run-time libraries to use the
adapter.

Subscriber usage:

dfesp_tva_adapter -k sub -h url —u tvauserid
—p tvapassword —t tvaprimarytmx —f tvatopic
—c tvaclientname -m tvamaxoutstand —b numbufferedmsgs
-o urlhostport <-s tvasecondarytmx> <-l tvalogfile>
<-w tvapubbwlimit> <-r tvapubrate><-e tvapubmsgexp>
<-g gdconfig> <-l native | solace | tervela | rabbitmq>
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile> <-C [configfilesection]>
<-a protofile> <-m protomsg> <-E tokenlocation>

Publisher usage:

dfesp_tva_adapter -k pub -h url —u tvauserid
—p tvapassword —t tvaprimarytmx —f tvatopic
—c tvaclientname -n tvasubname
-o urlhostport <-s tvasecondarytmx> <-l tvalogfile>
<-g gdconfig> <-l native | solace | tervela | rabbitmq>
<-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile> <-C [configfilesection]>
<-a protofile> <-m protomsg> <-E tokenlocation>

Parameter Definition

-k Specifies “sub” for subscriber use and “pub” for publisher
use

-h url Specifies the dfESP publish and subscribe standard URL in
the form "dfESP://host:port/project/
continuousquery/window”.

Append the following for subscribers: ?snapshot=true
| false

Append the following for subscribers if needed:

• ?collapse=true | false

• ?rmretdel=true | false

Using the Tervela Data Fabric Adapter 383

Parameter Definition

-u tvauserid Specifies the Tervela user name.

-p tvapassword Specifies the Tervela password.

-t tvaprimarytmx Specifies the Tervela primary TMX.

-f tvatopic Specifies the Tervela topic.

-c tvaclientname Specifies the Tervela client name.

-m tvamaxoutstand Specifies the Tervela maximum number of unacknowledged
messages.

-b numbufferedmsgs Specifies the maximum number of messages buffered by a
standby subscriber connector.

-o urlhostport Specifies the host:port string sent in connector metadata
message

—s tvasecondarytmx Specifies the Tervela secondary TMX.

—itvalogfile Specifies the Tervela log file. The default is syslog.

—w tvapubbwlimit Specifies the Tervela maximum bandwidth of published data
(Mbps). The default value is 100.

-r tvapubrate Specifies the Tervela publish rate (Kbps). The default value
is 30.

—e tvapubmsgexp Tervela maximum time to cache published messages
(seconds); the default value is 1

—g gdconfig Specifies the guaranteed delivery configuration file.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. If you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration
files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug | info
| warn | error | fatal
| off

Set the logging level for the adapter. This is the same range
of logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

—y logconfigfile Specifies the log configuration file.

-C [configfilesection] Specifies the section in /etc/connectors.config to
parse for configuration parameters.

384 Chapter 17 • Using Adapters

Parameter Definition

-a protofile Specifies the .proto file that contains the message used for
Google Protocol buffer support.

-m protomsg Specifies the message itself in the .proto file that is
specified by the protofile parameter.

-E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server

Using the Tibco Rendezvous (RV) Adapter
The Tibco RV adapter supports publish and subscribe operations using a Tibco RV
daemon. You must install the Tibco RV run-time libraries to use the adapter.

Subscriber usage:

dfesp_tibrv_adapter -k sub -h url -f tibrvsubject —t tibrvtype
-s tibrvservice<-n tibrvnetwork> <-m tibrvdaemon>
<-d dateformat> <-g gdconfig>
<-l native | solace | tervela | rabbitmq> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile> <-C [configfilesection]>
<-a protofile> <-b protomsg> <-D csvfielddelimiter> <-A> <-R> <-E tokenlocation>

Publisher usage:

dfesp_tibrv_adapter -k pub -h url -f tibrvsubject —t tibrvtype
-s tibrvservice<-n tibrvnetwork> <-m tibrvdaemon><-b blocksize>
<-d dateformat> <-e><-g gdconfig>
<-l native | solace | tervela | rabbitmq> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile> <-C [configfilesection]> <-I>
<-a protofile> <-b protomsg> <-E tokenlocation>

Table 17.1 Parameter Definitions

Parameter Definition

-k Specifies “sub” for subscriber use and “pub” for publisher
use.

-h url Specifies the dfESP publish and subscribe standard URL in
the form "dfESP://host:port/project/
continuousquery/window”.

Append the following for subscribers: "?snapshot=
true | false ".

Append the following for subscribers if needed:

• ?collapse= true | false

• ?rmretdel= true | false

Using the Tibco Rendezvous (RV) Adapter 385

Parameter Definition

-f tibrvsubject Specifies the Tibco RV subject.

-t tibrvtype Specifies binary, CSV, or JSON. opaquestring is
supported for publishers.

-s tibrvservice Specifies the Tibco RV service.

-n tibrvnetwork Specifies the Tibco RV network.

-m tibrvdaemon Specifies the Tibco RV daemon.

-b blocksize Specifies the block size. The default value is 1.

—d dateformat Specifies the date format. The default is %Y-%m-%d %H:
%M:%S.

—e Specifies that events are transactional.

—g gdconfig Specifies the guaranteed delivery configuration file.

—l native | solace |
tervela | rabbitmq

Specifies the transport type. If you specify solace,
tervela, or rabbitmq transports instead of the default
native transport, use the required client configuration
files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug |
info | warn | error |
fatal | off

Set the logging level for the adapter. This is the same range
of logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

—y logconfigfile Specifies the log configuration file.

-C [configfilesection] Specifies the name of the section of /etc/
connectors.config to parse for configuration
parameters.

-I When a field in an input CSV event cannot be parsed, insert
a null value and continue publishing.

-a protofile Specifies the .proto file that contains the message used for
Google Protocol buffer support.

-b protomsg Specifies the message itself in the .proto file that is
specified by the protofile parameter.

-D csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

-A Specifies that input events are missing the key field that is
autogenerated by the source window.

386 Chapter 17 • Using Adapters

Parameter Definition

-R Specifies to build events with opcode = Upsert instead of
Insert.

-E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server

Using the Twitter Publisher Adapter
The Twitter adapter is publisher only. It consumes Twitter streams and injects event
blocks into source windows of an engine. The Twitter adapter provides the following
capabilities:

• subscribes to Twitter streams and receives a continuous flow of tweets as soon as
they are tweeted.

• filters the incoming streams using the following standard features provided by
Twitter:

• follows specific users.

• tracks specific keywords.

• filters specific geographical locations.

• filters specific languages.

• receives random generated tweets.

• receives only RT tweets. This requires specific Twitter account authorization.

• receives only tweets that include links. This requires specific Twitter account
authorization.

• receives full “fire hose.” This requires specific Twitter account authorization.

• publishes received tweets to a source window for processing inside a model.

Usage:

dfesp_twitter_publisher -u url -m sample | filter | links | firehose | retweet <-f followlist>
<-k tracklist> < -p locations> <-a languages> <-C prevcount> < -b blocksize>
<-t> <-d dateformat>< -g gdconfigfile> <-c [configfilesection]> <-T twitterpropfile>
< -l native | solace | tervela | rabbitmq> <-o severe | warning | info> <-s>
<—O tokenlocation>

Parameter Definition

—u url Specifies the publish standard URL in the
form "dfESP://host:port/project/
continuousquery/window".

-m sample | filter | links |
firehose | retweet

Specifies the method type for subscribing to
Twitter streams. See the table that follows on
page 389.

Using the Twitter Publisher Adapter 387

Parameter Definition

-f followlist Specifies the list of user IDs to follow with the
filter method in the form “user1,user2,user3”.
The default access level allows up to 400
follower user IDs. See https://dev.twitter.com/
streaming/overview/request-parameters for
more details.

-k tracklist Specifies the list of keywords to track with the
filter method in the form
“keyword1,keyword2,keyword3”. The default
access level allows up to 200 track keywords.

See Streaming API request parameters for
more information.

-p locations Specifies the list of locations to track with the
filter method in the form of a comma-
separated list of longitude,latitude pairs. Each
pair specifies a set of bounding boxes with the
southwest corner of the bounding box coming
first. Sample:“-122.75,36.8,-121.75,37.8” for
San Francisco. Note that bounding boxes do
not act as filters for other filter parameters.
The default access level allows up to 10 1-
degree location boxes.

See Streaming API request parameters for
more information.

-a languages Specifies a comma-separated list of BCP 47
language identifiers to return only Tweets that
have been detected as being written in the
specified languages. For example, connecting
with “en,fr” streams only Tweets detected to
be in the English or French language.

-C prevcount Used with filter, link, or retweet method.
Indicates the number of previous statuses to
stream before transitioning to the live stream.
Default is 0. The supplied value can be an
integer from 1 to 150000 or from -1 to
-150000. If a positive number is specified, the
stream transitions to live values after the
backfill has been delivered to the client. When
a negative number is specified, the stream
disconnects after the backfill has been
delivered to the client, which might be useful
for debugging. This parameter requires
elevated access to use.

See Streaming API request parameters for
more information.

-b blocksize Specifies the number of events per event
block.

388 Chapter 17 • Using Adapters

https://dev.twitter.com/streaming/overview/request-parameters
https://dev.twitter.com/streaming/overview/request-parameters
https://dev.twitter.com/streaming/overview/request-parameters

Parameter Definition

-t Specifies that event blocks are transactional.
The default is normal.

-d dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events.

The default values are "yyyy-MM-
ddHH:mm:ss" for ESP_DATETIME and
"yyyy-MM-ddHH:mm:ss.SSS" for
ESP_TIMESTAMP.

-c [configfilesection] Name of section in /etc/
javaadapters.config to parse for
configuration parameters.

-T twitterpropfile Name of file in /etc to parse for Twitter
configuration parameters. Default is
twitterpublisher.properties.

-g gdconfigfile Specifies the guaranteed delivery
configuration file for the client.

-l native | solace | tervela |
rabbitmq

Specifies the transport type. When you specify
solace, tervela, or rabbitmq transports
instead of the default native transport, use
the required client configuration files
specified in “Using Alternative Transport
Libraries for Java Clients” on page 286.

-o severe | warning | info Specifies the application logging level.

-s Specifies to build events with opcode = Upsert
instead of Insert.

-O tokenlocation Specifies the location of the file in the local
file system that contains the OAuth token that
is required for authentication by the publish/
subscribe server

Twitter sets limitations to access streams and uses some methods depending on the user-
account level of access:

Access
Method Limitations

sample Starts listening on random sample of all public statuses. The default access
level provides a small proportion of the firehose. The "Gardenhose"
access level provides a proportion more suitable for data mining and
research applications that need a statistically significant sample.

Using the Twitter Publisher Adapter 389

Access
Method Limitations

filter Starts consuming public statuses that match one or more filter predicates. At
least one predicate parameter, follow, locations, or track must be specified.
Multiple parameters can be specified that enable most clients to use a single
connection to the Streaming API. Placing long parameters in the URL can
cause the request to be rejected for excessive URL length. The default
access level allows up to 200 track keywords, 400 follower user IDs and 10
1-degree location boxes. Increased access levels enable the following:

• 80,000 follower user IDs ("shadow" role)

• 400,000 follower user IDs ("birddog" role)

• 10,000 track keywords ("restricted track" role)

• 200,000 track keywords ("partner track" role)

• 200 10-degree location boxes ("locRestricted" role)

Increased track access levels also pass a higher proportion of statuses before
limiting the stream. For more information about specifying parameters, see
Streaming API request parameters on the Twitter website.

firehose Starts listening on all public statuses. Available only to Twitter approved
parties and requires a signed agreement to access.

retweet Starts listening on all retweets. The retweet stream is not a generally
available resource. Few applications require this level of access. Creative
use of a combination of other resources and various access levels can satisfy
nearly every application use case.

link Starts listening on all public statuses containing links. Available only to
Twitter approved parties and requires a signed agreement to access.

When you install this adapter, be mindful of the following:

• The twitterpublisher.properties file is required. SAS Event Stream
Processing provides a sample one in $DFESP_HOME/etc.

• You must download the files twitter4j-core-4.0.2.jar and twitter4j-
stream-4.0.2.jar from twitter4j.org and copy them to $DFESP_HOME/lib.

To configure this adapter:

1. Set up and authorize a Twitter user account to be used by the Twitter adapter to
receive tweets.

a. Sign in to Twitter.

b. After signing in, go to http://dev.twitter.com.

c. Select Manage Your Apps. This directs you to the Application Management
page.

d. Click Create New App.

e. Complete the application details. Click Create your Twitter application.

f. You are prompted to review and adjust your application’s settings. Click Keys
and Access Tokens.

g. Click Create my access token. Twitter generates your access tokens.

390 Chapter 17 • Using Adapters

https://dev.twitter.com/docs/streaming-apis/parameters
http://dev.twitter.com

2. Enter the generated access tokens in the configuration file
twitterpublisher.properties as follows:

twitter4j.oauth.consumerKey=generated_consumer_key_API_key
twitter4j.oauth.consumerSecret=generated_consumer_key_API_Secret_key
twitter4j.oauth.accessToken=generated_access_token
twitter4j.oauth.accessTokenSecret=generated_access_token_secret

3. Save and close twitterpublisher.properties.

4. If you need to add other settings such as proxy servers, API stream URLs, or trace
settings, seehttp://twitter4j.org/en/configuration.html#Streaming and edit the file
twitterpublisher.properties accordingly.

Using the Twitter Publisher Adapter 391

http://twitter4j.org/en/configuration.html#Streaming

392 Chapter 17 • Using Adapters

Chapter 18

Enabling Encryption on Socket
Connections

Overview to Enabling Encryption . 393

Understanding SSL Certificate Requirements . 394

Understanding the SSL Handshake Process . 394

Overview to Enabling Encryption
You can enable encryption on TCP/IP connections within an event stream processing
engine. Specifically, you can encrypt the following:

• connections that are created by a client using the C or Java publish/subscribe API to
connect to an event stream processing server.

• connections that are created by an adapter connecting to an event stream processing
server.

• connections that are created by a file and socket connector or adapter that acts as a
socket client or server. In this case, the TCP peer can be another file and socket
connector or adapter, or a third-party socket application.

Note: Suppose a file and socket connector or adapter connects to a SAS LASR
Analytic Server. Suppose further that the server runs on a Hadoop Distributed
File System (HDFS) name node in order to access SAS HDAT files. In this case,
encryption is not supported.

You must meet the following requirements in order to enable encryption:

• The OpenSSL libraries must be installed on all computer systems that run the client
and server. You can install the SAS Event Stream Processing Encryption and
Authentication Overlay in order to install OpenSSL.

• The DFESP_SSLPATH environment variable must be defined with the path to the
OpenSSL shared object or DLL.

Note: For a Java publish/subscribe client or adapter, the value of DFESP_SSLPATH
is not important. SSL is supported natively in Java. Nevertheless,
DFESP_SSLPATH must be defined.

• The proper SSL certificates must be installed on the client and server. If encryption is
not enabled through DFESP_SSLPATH, the installation runs successfully without
OpenSSL being installed.

393

Understanding SSL Certificate Requirements
Consider the following SSL certificate requirements in order to enable encryption:

• The required SSL certificates differ for client and server. You must copy the needed
certificate files into $DFESP_HOME/etc.

• The server is an engine with publish/subscribe enabled or a file and socket connector
or adapter running as a server. The server requires the following files in
$DFESP_HOME/etc:

• server.pem

This file must contain a concatenation of a certificate and private key.

• key.passphrase (only when the key is password-protected)

• A client is a C or Java publish/subscribe client, an adapter, or a file and socket
connector or adapter running as a client. The client requires the ca.pem file in
$DFESP_HOME/etc. This file must contain a certificate used to verify the received
server side certificate.

For certificates signed by a Certificate Authority (CA), the certificate of the signer
must be present. For self-signed certificates, the certificate can be a copy of the
certificate in server.pem.

Production traffic must use only certificates that are signed by a CA.

The event stream processing client and server forces the negotiated encryption protocol
and cipher suite to be TLSv1.2 compliant.

Understanding the SSL Handshake Process
When DFESP_SSLPATH is defined but SSL certificates cannot be found or the
OpenSSL library cannot be loaded, a fatal error is logged at start-up. If there are no start-
up errors, the publish/subscribe server indicates whether SSL is enabled or disabled
through an INFO level log message logged when the server starts up.

A client that is enabled for SSL logs a handshake-status INFO-level message when it
initiates its connection. When a client or server is negotiating SSL and its peer is not, or
when the SSL handshake itself fails, the connection fails and an error message is logged.

394 Chapter 18 • Enabling Encryption on Socket Connections

Chapter 19

Visualizing Event Streams

Overview to Event Visualization . 395

Using Streamviewer . 395

Overview to Event Visualization
You can visualize event streams two ways:

• SAS Event Stream Processing Studio

• Streamviewer, which is provided with SAS Event Stream Processing

You can use SAS Event Stream Processing Studio to subscribe to windows. See Chapter
5, “Using SAS Event Stream Processing Studio,”.

Using Streamviewer
Streamviewer enables you to subscribe to a running event stream processing model and
display the events streaming through it. Each event is displayed as a row in a table. Each
row of the table is keyed by the schema key of the corresponding window.

You can find Streamviewer in $DFESP_HOME/share/tools/streamviewer. To
run it, do one of the following:

• Copy $DFESP_HOME/share/tools/streamviewer to the directory on a web
server where web applications run. Open a browser and enter http://
yourserver:yourport/streamviewer/streamviewer.html.

• Copy the contents of $DFESP_HOME/share/tools/streamviewer to a local
computer system. Navigate to that directory and double-click
streamviewer.html.

After Streamviewer is running, enter a URL that points to an event stream processing
publish/subscribe HTTP provider. Use the following form for the URL: http://

395

provider:port, where provider is an event stream processing publish/subscribe
HTTP provider and port is a publish/subscribe port.

The provider can reside in a process within a C++ application or in the XML server.

Specify the following on a command line to start an event stream processing publish/
subscribe HTTP provider: dfesp_xml_server -http-pubsub [port] where
port is the publish/subscribe port that you have enabled.

Alternatively, specify the publish/subscribe HTTP provider within an XML model:

<http-servers>
 <http-pubsub-server port='[http pubsub port]'>
 </http-servers>

If you want to run the XML server with HTTP publish/subscribe enabled, you must
associate the server with a publish/subscribe port.

To view events streaming through a C++ application, send -h [pubsub http port]
to the dfESPengine::initialize() call in your application.

Note: The Streamviewer UI uses HTML5 local storage to store the specified URL and
configuration items. Therefore, you must use a browser that supports HTML5.

You subscribe to a running event stream processing model in one of three modes:

Update
The opcode of an event is used to add, modify, or delete the event’s corresponding
row in the table. When you create an Update table, it grabs the current snapshot of
the model and populates the table with the snapshot’s events.

Streaming
An event is appended to the end of the table and the event’s opcode is displayed. A
streaming table displays a limited number of rows. When the maximum is reached,
the oldest events are removed from the beginning.

To change the number of rows streamed through the table, click on the user
interface (UI). The default number of rows is 500.

Streaming with Snapshot
Behaves the same as Streaming mode except that the subscription is populated with a
current snapshot of the window elements.

Note: Streaming a large number of rows can affect the performance of the UI.

Streamviewer is supported on the Google Chrome browser.

396 Chapter 19 • Visualizing Event Streams

Chapter 20

Enabling Guaranteed Delivery

Overview to Guaranteed Delivery . 397

Guaranteed Delivery Success Scenario . 399

Guaranteed Delivery Failure Scenarios . 400

Additions to the Publish/Subscribe API for Guaranteed Delivery 400

Configuration File Contents . 401

Overview to Guaranteed Delivery
Both the Java and C publish and subscribe (pub/sub) APIs support guaranteed delivery
between a single publisher and multiple subscribers. Guaranteed delivery assumes a
model where each event block that is published into a source window generates exactly
one event block in a subscribed window. This one block in, one block out principle must
hold for all published event blocks. The guaranteed delivery acknowledgment
mechanism is not aware of the event processing performed by the model.

When a publish or subscribe connection is started, a client is established to perform
various publish/subscribe activities. When a publish connection is started, the number of
guaranteed subscribers required to acknowledge delivery of its event blocks is specified.
The time-out value used to generate negative acknowledgments upon non-receipt from
all expected subscribers is also specified. Every event block injected by the publisher
contains a unique 64-bit ID set by the publisher. This ID is passed back to the publisher
from the publish client with every acknowledgment or negative acknowledgment in a
publisher user-defined callback function. The function is registered when the publish
client is started.

When a subscribe connection is started, the subscribe client is passed a set of guaranteed
delivery publishers as a list of host and port entries. The client then establishes a TCP
connection to each publisher on the list. This connection is then used only to transport
acknowledgments specific to this publisher/subsciber pair. The subscriber calls a new
publish/subscribe API function to trigger an acknowledgment.

397

Event blocks contain new host, port, and ID fields. All event blocks are uniquely
identified by the combination of these fields, which enables subscribers to identify
duplicate (that is, resent) event blocks.

Figure 20.1 Guaranteed Delivery Data Flow Diagram

Event Stream Processing
Engine Pub/Sub API

ACK/NACK with ID

Event Block printer

ACK with Event Block printer

Event Block printer

ACK with Event Block printer

Event Block printer

ACK/NACK with ID

Event Block with ID,
host, and port

Event Block with ID,
host, and port

Event Block with ID,
host, and port

ACK with ID sent to host and port

ACK with ID sent to host and port

Event Stream Processing Engine Subsystem

ACK with ID sent to host and port

Event Block printer

Pub client

Pub client

ESP Engine Sub client

Sub client

Event Stream Processing
Engine Pub/Sub API

Please note the following:

• Publishers and subscribers that do not use the guaranteed-delivery-enabled API
functions are implicitly guaranteed delivery disabled.

• Guaranteed delivery subscribers can be mixed with non-guaranteed delivery
subscribers.

• A guaranteed delivery-enabled publisher might wait to begin publishing until a
READY callback has been received. This indicates that its configured number of
subscribers have established their acknowledgment connections back to the
publisher.

• Event blocks received by a guaranteed-delivery-enabled subscriber as a result of a
snapshot generated by the engine are not acknowledged.

• Under certain conditions, subscribers receive duplicate event blocks. These
conditions include the following:

• A publisher begins publishing before all related subscribers have started. Any
started subscriber can receive duplicate event blocks until the number of started
subscribers reaches the number of required acknowledgments passed by the
publisher.

• A guaranteed delivery-enabled subscriber disconnects while the publisher is
publishing. This triggers the same scenario described previously.

• A slow subscriber causes event blocks to time-out, which triggers a negative
acknowledgment to the publisher. In this case all subscribers related to the
publisher receives any resent event blocks, including those that have already
called C_dfESPGDsubscriberAck() for those blocks.

• If a guaranteed delivery-enabled subscriber fails to establish its acknowledgment
connection, it retries at a configurable rate up to a configurable maximum number of
retries.

398 Chapter 20 • Enabling Guaranteed Delivery

• Suppose that a guaranteed delivery-enabled publisher injects an event block that
contains an ID, and that the ID is present in the publish client’s not acknowledged-ID
list. In that case, the inject call is rejected by the publish client. The ID is cleared
from the list when the publish client passes it to the ACK/NACK callback function
of the new publisher.

Guaranteed Delivery Success Scenario
In the context of guaranteed delivery, the publisher and subscriber are customer
applications that are the endpoints in the data flow. The subscribe and publish clients are
event stream processing code that implements the publish/subscribe API calls made by
the publisher and subscriber.

The flow of a guaranteed delivery success scenario is as follows:

1. The publisher passes an event block to the publish client, where the ID field in the
event block has been set by the publisher. The publish client fills in the host-port
field, adds the ID to its unacknowledged ID list, and injects it to the engine.

2. The event block is processed by the engine and the resulting Inserts, Updates, or
Deletes on subscribe windows are forwarded to all subscribe clients.

3. A guaranteed delivery-enabled subscribe client receives an event block and passes it
to the subscriber by using the standard subscriber callback.

4. Upon completion of all processing, the subscribers call a new API function with the
event block pointer to trigger an acknowledgment.

5. The subscribe client sends the event block ID on the guaranteed delivery
acknowledgment connection that matches the host or port in the event block,
completely bypassing the engine.

6. Upon receipt of the acknowledgment, the publish client increments the number of
acknowledgments received for this event block. If that number has reached the
threshold passed to the publish client at start-up, the publish client invokes the new
guaranteed delivery callback with parameters acknowledged and ID. It removes the
ID from the list of unacknowledged IDs.

Guaranteed Delivery Success Scenario 399

Guaranteed Delivery Failure Scenarios
There are three failure scenarios for guaranteed delivery flows:

Scenario Description

Event Block Time-out • An event block-specific timer expires on a guaranteed-
delivery-enabled publish client, and the number of
acknowledgments received for this event block is below the
required threshold.

• The publish client invokes the new guaranteed delivery
callback with parameters NACK and ID. No further
retransmission or other attempted recovery by the publish
client or subscribe client is undertaken for this event block. The
publisher most likely backs out this event block and resends.

• The publish client removes the ID from the list of
unacknowledged IDs.

Invalid Guaranteed
Delivery Acknowledged
Connect Attempt

• A guaranteed-delivery-enabled publish client receives a
connect attempt on its guaranteed delivery acknowledged
server but the number of required client connections has
already been met.

• The publish client refuses the connection and logs an error
message.

• For any subsequent event blocks received by the guaranteed
delivery-enabled subscribe client, an error message is logged.

Invalid Event Block ID • A guaranteed-delivery-enabled publisher injects an event block
that contains an ID already present in the publish client’s
unacknowledged ID list.

• The inject call is rejected by the publish client and an error
message is logged.

Additions to the Publish/Subscribe API for
Guaranteed Delivery

The publish/subscribe API provides the following methods to implement guaranteed
delivery sessions:

• C_dfESPGDpublisherStart()

• C_dfESPGDsubscriberStart()

• C_dfESPGDsubscriberAck()

• C_dfESPGDpublisherCB_func()

• C_dfESPGDpublisherGetID()

400 Chapter 20 • Enabling Guaranteed Delivery

For more information, see “Functions for the C Publish/Subscribe API” on page 267. For
publish/subscribe operations without a guaranteed delivery version of the function, call
the standard publish/subscribe API function.

Configuration File Contents
The publish client and subscribe client reads a configuration file at start-up to get
customer-specific configuration information for guaranteed delivery. The format of both
of these files is as follows.

Guaranteed Delivery-enabled Publisher Configuration File Contents

Local port number for guaranteed delivery acknowledgment connection server.

Time-out value for generating negative acknowledgments, in seconds.

Number of received acknowledgments required within time-out period to generate positive
instead of negative acknowledgments.

File format: GDpub_port=<port>

GDpub_timeout=<timeout>

GDpub_numSubs=<number of subscribers generating
acknowledged>

Guaranteed Delivery-enabled Subscriber Configuration File Contents

List of guaranteed delivery-enabled publisher host or port entries. Each entry contains a
host:port pair corresponding to a guaranteed delivery-enabled publisher from which the
subscriber wishes to receive guaranteed delivery event blocks.

Acknowledgment connection retry interval, in seconds.

Acknowledgment connection maximum number of retry attempts.

File Format: GDsub_pub=<host:port>

GDsub_retryInt=<interval>

GDsub_maxretries=<max>

Configuration File Contents 401

402 Chapter 20 • Enabling Guaranteed Delivery

Chapter 21

Implementing 1+N-Way Failover

Overview to 1+N-Way Failover . 403

Topic Naming . 406
Overview to Topic Naming . 406
Rabbit MQ and Solace . 406
Tervela . 407

Failover Mechanisms . 407
Overview to Failover Mechanisms . 407
Determining ESP Active/Standby State (RabbitMQ) . 407
Determining ESP Active/Standby State (Solace) . 407
Determining ESP Active/Standby State (Tervela) . 409
New ESP Active Actions on Failover (Rabbit MQ) . 409
New ESP Active Actions on Failover (Solace) . 409
New ESP Active Actions on Failover (Tervela) . 410

Restoring Failed Active ESP State after Restart . 411

Using ESP Persist/Restore . 411

Message Sequence Numbers . 411

Metadata Exchanges (Rabbit MQ and Solace) . 412

Metadata Exchanges (Tervela) . 412

Required Software Components . 413

Required Client Configuration . 413

Required Appliance Configuration (Rabbit MQ) . 413

Required Appliance Configuration (Solace) . 413

Required Appliance Configuration (Tervela) . 414

Overview to 1+N-Way Failover
SAS Event Stream Processing can use message buses to provide 1+N-Way Failover.
Event stream processing publishers and subscribers work with packages of events called
event blocks when they interface with the engine. When traversing a message bus, event
blocks are mapped one-to-one to appliance messages. Each payload message contains
exactly one event block. These event blocks contain binary event stream processing data.
A payload appliance message encapsulates the event block and transports it unmodified.

403

The sections that follow use the terms “message” and “event block” interchangeably.
The term active/standby identifies the state of any event stream processors in a 1+N
cluster of event stream processors. The term primary/secondary identifies the state of a
message bus with respect to another message bus in a redundant pair. The terms 1+N,
failover, cluster, and combinations of these terms are used interchangeably.

The following diagram shows how an engine integrates with message buses to provide
failover. It shows two separate messaging appliances, one between publishers and
engines (ESPs) and a second between ESPs and subscribers. In actual deployments,
these do not have to be separate appliances. Regardless of whether publishers and
subscribers use the same or different appliances, there are two messaging appliances for
each virtual messaging appliance — a primary and secondary for messaging appliance
failover.

Figure 21.1 Engine Integration with Message Buses

In this diagram, ESP1 is the active engine (on start-up at least). ESP2 and ESP3 are
standbys that are receiving published event blocks. They do not send processed event
blocks to the subscriber message bus. This distinction is depicted with dotted arrows.
The event stream processing message bus connector for subscribe services is connected
to the fabric. It does not actually sending event blocks to the message bus until one of
them becomes the active on failover.

404 Chapter 21 • Implementing 1+N-Way Failover

All ESPs in a 1+N failover cluster must implement the same model, because they are
redundant. It is especially important that all ESPs in the cluster use the same engine
name. This is because the engine name is used to coordinate the topic names on which
messages are exchanged through the message bus.

Publishers and subscribers can continue to use the ESP API even when they are
subscribing or publishing through the message bus for failover.

The following transport options are supported by the publish/subscribe API and in
adapter configuration. These options are supported so that failover can be introduced to
an existing implementation without reengineering the subscribers and publishers:

• native

• Rabbit MQ

• Solace

• Tervela

However, when you use the message bus for publish/subscribe, the event stream
processing API uses the message bus API to communicate with the messaging appliance.
It does not establish a direct TCP connection to the event stream processing publish/
subscribe server.

Engines implement Rabbit MQ, Solace, or Tervela connectors to communicate with the
message bus. Like client publishers and subscribers, they are effectively subscribers and
publishers. They subscribe to the message bus for messages from the publishers. They
publish to the message bus so that it can publish messages to the subscribers.

These message buses support using direct (that is, non-persistent) or persistent
messaging modes. Rabbit MQ connectors implement non-persistence by declaring non-
durable auto-delete queues. They implement persistence by declaring durable non-auto-
delete queues. The durable queues require explicit message acknowledgment, which the
connector does not do. Messages are read but not consumed from the queue when they
are not acknowledged. Solace fabrics can use either direct or persistent messaging. The
Tervela connector requires that Tervela fabrics use persistent messaging for all publish/
subscribe communication between publishers, ESPs, and subscribers.

Enabling persistent messaging on the message bus implies the following:

• The message bus guarantees delivery of messages to and from its clients using its
proprietary acknowledgment mechanisms. Duplicate message detection, lost
message detection, retransmissions, and lost ACK handling are handled by the
message bus.

• Upon re-connection of any client and its re-subscription to an existing topic, the
message bus replays all the messages that it has persisted for that topic. The number
of messages or time span covered depends on the configuration of the message bus.

• At the start of the day, the message bus should be purged of all messages on related
topics. Message IDs must be synchronized across all connectors.

The ESPs are deployed in a 1+N redundant manner. This means the following:

• All the ESPs in the 1+N cluster receive messages from the publishers.

• Only the active ESP in the 1+N cluster publishes messages to the subscribers.

• One or more backup ESPs in a 1+N cluster might be located in a remote data center,
and connected over the WAN.

For simplicity, the reference architecture diagram illustrates one cluster of 1+N
redundant ESPs. However, there can be multiple clusters of ESPs, each subscribing and

Overview to 1+N-Way Failover 405

publishing on a different set of topics. A single publisher can send messages to multiple
clusters of ESPs. A single subscriber can receive messages from multiple ESPs.

The message bus provides a mechanism to signal to an ESP that it is the active ESP in
the cluster. The message bus provides a way for an ESP, when notified that it is active, to
determine the last message published by the previously active ESP. The newly active
ESP can resume publishing at the appropriate point in the message stream.

Sequence numbering of messages is managed by the event stream processor’s
connectors for the following purposes:

• detecting duplicates

• detecting gaps

• determining where to resume sending from after an ESP fail-over

An ESP that is brought online resynchronizes with the day’s published data and the
active ESP. The process occurs after a failure or when a new ESP is added to a 1+N
cluster.

ESPs are deployed in 1+N redundancy clusters. All ESPs in the cluster subscribe to the
same topics on the message bus, and hence receive exactly the same data. However, only
one of the ESPs in the cluster is deemed the active ESP at any time. Only the active ESP
publishes data to the downstream subscribers.

Topic Naming

Overview to Topic Naming
Topic names are mapped directly to engine (ESP) windows that send or receive event
blocks through the fabric. Because all ESPs in a 1+N cluster implement the same model,
they also use an identical set of topics on the fabric. However, to isolate publish flows
from subscribe flows to the same window, all topic names are appended with an “in” or
“out” designator. This enables clients and ESP appliance connectors to use appliance
subscriptions and publications, where event blocks can flow only in one direction.

Current client applications continue to use the standard ESP URL format, which includes
a host:port section. No publish/subscribe server exists, so host:port is not interpreted
literally. It is overloaded to indicate the target 1+N cluster of ESPs. All of these ESPs
have the same engine name, so a direct mapping between host:port and engine name is
established to associate a set of clients with a specific 1+N ESP cluster.

You create this mapping by configuring each ESP appliance connector with a
“urlhostport” parameter that contains the host:port section of the URL passed by the
client to the publish/subscribe API. This parameter must be identical for all appliance
connectors in the same 1+N failover cluster.

Rabbit MQ and Solace
The topic name format used on Rabbit MQ and Solace appliances is as follows:
host:port/project/contquery/window/direction, where direction takes the
value “I” or “O”. Because all this information is present in a client URL, it is easy for
clients to determine the correct appliance topic. ESP appliance connectors use their
configured “urlhostport” parameter to derive the “host:port” section of the topic
name, and the rest of the information is known by the connector.

406 Chapter 21 • Implementing 1+N-Way Failover

Tervela
The topic name format used on Tervela appliances is as follows:
“SAS.ENGINES.engine.project.contquery.window.direction”, where
direction takes the value “IN” or “OUT”. ESP appliance connectors know this
information, so it is easy for them to determine the correct appliance topic.

Clients must be able to map the “host:port” section of the received URL to the engine
section of the topic name. This mapping is obtained by the client by subscribing to a
special topic named SAS.META.host:port.. The ESP appliance connectors use their
configured “urlhostport” parameter to build this topic name,. They publish a
metadata message to the topic that includes the “host:port” to engine mapping. Only
after receiving this message can clients send or receive event block data. ESP appliance
connectors automatically send this message when the ESP model is started.

Failover Mechanisms

Overview to Failover Mechanisms
If the active engine (ESP) in a failover cluster fails, the standby ESP appliance
connectors are notified. Then one of them becomes the new active ESP. The fabric tells
the new active connector the ID of the last message that it received on the window-
specific “out” topic. The new active connector begins sending data on that “out” topic
with ID + 1.

When appliance connectors are inactive, they buffer outbound messages (up to a
configurable maximum) so that they can find messages starting with ID+1 in the buffer
if necessary.

Note: Failover support is unavailable when Google Protocol buffer support or JSON
messaging is enabled.

Determining ESP Active/Standby State (RabbitMQ)
You must have installed the presence-exchange plug-in on the Rabbit MQ server. All
ESP subscribers declare a Rabbit MQ exchange of type x-presence. The exchange is
named after the configured exchange name with _failoverpresence appended.
Then subscribers bind to a queue to both send and receive notifications of bind and
unbind actions by all ESP peers.

All ESPs receive send and receive notifications in the same order. Therefore, they
maintain the same ordered list of present ESPs (that is, those that are bound). The first
ESP in the list is always the active ESP. When a notification is received, an ESP
compares its current active/standby state to its position in the list and updates its active/
standby state when necessary.

Determining ESP Active/Standby State (Solace)
For Solace appliances, an exclusive messaging queue is shared amongst all the engines
(ESPs) in the 1+N cluster. The queue is used to signal active state. No data is published

Failover Mechanisms 407

to this queue. It is used as a semaphore to determine which ESP is the active at any point
in time.

Figure 21.2 Determining Active State

Publisher

ESP
(Active)

ESP
(Standby)

Exclusive
Queue

Message
Fabric

ESP
(Standby)

ESP active/standby status is coordinated among the engines using the following
mechanism:

1. When an ESP subscriber appliance connector starts, it tries, as a queue consumer, to
bind to the exclusive queue that has been created for the ESP cluster.

2. If the connector is the first to bind to the queue, it receives a “Flow Active”
indication from the messaging appliance API. This signals to the connector that it is
now the active ESP.

3. As other connectors bind to the queue, they receive a “Flow Inactive” indication.
This indicates that they are standby ESPs, and should not be publishing data onto the
message bus.

4. If the active ESP fails or disconnects from the appliance, one of the standby
connectors receives a “Flow Active” indication from the messaging appliance API.
Originally, this is the second standby connector to connect to the appliance. This
indicates that it is now the active ESP in the cluster.

408 Chapter 21 • Implementing 1+N-Way Failover

Determining ESP Active/Standby State (Tervela)
When using the Tervela Data Fabric, ESP active/standby status is signaled to the ESPs
using the following mechanism:

1. When an ESP subscriber appliance connector starts, it attempts to create a “well-
known” Tervela inbox. It uses the engine name for the inbox name, which makes it
specific to the failover cluster. If successful, that connector takes ownership of a
system-wide Tervela GD context, and becomes active. If the inbox already exists,
another connector is already active. The connector becomes standby and does not
publish data onto the message bus.

2. When a connector becomes standby, it also connects to the inbox, and sends an
empty message to it.

3. The active connector receives an empty message from all standby connectors. It
assigns the first responder the role of the active standby connector by responding to
the empty message. The active connector maintains a map of all standby connectors
and their status.

4. If the active connector receives notification of an inbox disconnect by a standby
connector, it notifies another standby connector to become the active standby, using
the same mechanism.

5. If the active ESP fails, the inbox also fails. At this point the fabric sends a
TVA_ERR_INBOX_COMM_LOST message sent to the connected standby connectors.

6. When the active standby connector receives a TVA_ERR_INBOX_COMM_LOST
message, it becomes the active ESP in the failover cluster. It then creates a new
inbox as described in step 1.

7. When another standby connector receives a TVA_ERR_COMM_LOST message, it
retains standby status. It also finds the new inbox, connects to it, and send an empty
message to it.

New ESP Active Actions on Failover (Rabbit MQ)
When a subscriber connector starts in standby state, it creates a queue that is bound to
the out topic that is used by the currently active connector. The subscriber consumes and
discards all messages received on this queue, except for the last one received. When its
state changes from standby to active, the subscriber extracts the message ID from the last
received message, deletes its receive queue, and starts publishing starting with the
following message:

ID = last message ID + 1

The connector can obtain this message and subsequent messages from the queue that it
maintained while it was inactive. It discards older messages from the queue.

New ESP Active Actions on Failover (Solace)
The newly active engine (ESP) determines, from the message bus, the last message
published by the previously active ESP for the relevant window. To assist in this process,
guaranteed messaging Last Value Queues (LVQs) are used.

LVQs are subscribed to the same “out” topics that are used by the appliance connectors.
An LVQ has the unique characteristic that it maintains a queue depth of one message,

Failover Mechanisms 409

which contains the last message published on the topic to which it subscribed. When the
ESP can publish messages as “direct” or “guaranteed”, those messages can always be
received by a guaranteed messaging queue that has subscribed to the message topic.
Thus, the LVQ always contains the last message that an ESP in the cluster published
onto the message bus.

When an ESP receives a “Flow Active” indication, it binds to the LVQ as a browser. It
then retrieves the last message published from the queue, saves its message ID,
disconnects from the LVQ, and starts publishing starting with message ID = the saved
message ID + 1. The connector can obtain this message and subsequent messages from
the queue that it maintained while it was inactive. It can ignore newly received messages
until the one with ID = saved message ID + 1 is received.

Figure 21.3 Last Value Queues

ESP

Subscriber Subscriber

Last
Value
Queue

Message
Fabric

Subscriber

New ESP Active Actions on Failover (Tervela)
Active Tervela appliance connectors own a cluster-wide Tervela GD context with a name
that matches the configured “tvaclientname” parameter. This parameter must be
identical for all subscribe appliance connectors in the same failover cluster. When a
connector goes active because of a failover, it takes over the existing GD context. This
allows it to query the context for the ID of the last successfully published message, and
this message ID is saved.

410 Chapter 21 • Implementing 1+N-Way Failover

The connector then starts publishing starting with message ID = the saved message ID
+ 1. The connector can obtain this message and subsequent messages from the queue
that it maintained while it was inactive. Alternatively, it can ignore newly received
messages until the one with ID = saved message ID + 1 is received.

Restoring Failed Active ESP State after Restart
When you manually bring a failed active ESP back online, it is made available as a
standby when another ESP in the cluster is currently active. If the message bus is
operating in “direct” mode, persisted messages on the topic do not replay. The standby
ESP remains out-of-sync with other ESPs with injected event blocks. When the message
bus is in “persistence” or “guaranteed” mode, it replays as much data as it has persisted
on the “in” topic when a client reconnects. The amount of data that is persisted depends
on message bus configuration and disk resources. In many cases, the data persisted
might not be enough to cover one day of messages.

Using ESP Persist/Restore
To guarantee that a rebooted engine (ESP) can be fully synchronized with other running
ESPs in a failover cluster, use the ESP persist/restore feature with an appliance in
“guaranteed” mode. This requires that ESP state is periodically persisted by any single
ESP in the failover cluster. A persist can be triggered by the model itself, but in a
failover cluster this generates redundant persist data.

Alternatively, a client can use the publish/subscribe API to trigger a persist by an ESP
engine. The URL provided by the client specifies host:port, which maps to a specific
ESP failover cluster. The messaging mechanism guarantees that only one ESP in the
cluster receives the message and executes the persist. On a Rabbit MQ server, this is
achieved by having the connector use a well-known queue name. Only a single queue
exists, and the first ESP to consume the persist request performs the persist action. On
Solace appliances, this is achieved by setting Deliver-To-One on the persist message to
the metadata topic. On the Tervela Data Fabric this is achieved by sending the persist
message to an inbox owned by only one ESP in the failover cluster.

The persist data is always written to disk. The target path for the persist data is specified
in the client persist API method. Any client that requests persists of an ESP in a specific
failover cluster should specify the same path. This path can point to shared disk, so
successive persists do not have to be executed by the same ESP in the failover cluster.

The other requirement is that the model must execute a restore on boot so that a rebooted
standby ESP can synchronize its state using the last persisted snapshot. On start-up,
appliance connectors always get the message ID of the last event block that was restored.
If the restore failed or was not requested, the connector gets 0. This message ID is
compared to those of all messages received through replay by a persistence-enabled
appliance. Any duplicate messages are ignored.

Message Sequence Numbers
The message IDs that are used to synchronize ESP failovers are generated by the ESP
engine. They are inserted into an event block when that event block is injected into the

Message Sequence Numbers 411

model. This ID is a 64-bit integer that is unique within the scope of its project/query/
window, and therefore unique for the connector. When redundant ESP engines receive
identical input, this ID is guaranteed to be identical for an event block that is generated
by different engines in a failover cluster.

The message IDs used to synchronize a rebooted ESP with published event blocks are
generated by the inject method of the Rabbit MQ, Solace, or Tervela publisher client
API. They are inserted into the event block when the event block is published into the
appliance by the client. This ID is a 64-bit integer that is incremented for each event
block published by the client.

Metadata Exchanges (Rabbit MQ and Solace)
The Rabbit MQ and Solace publish/subscribe API handles the
C_dfESPpubsubQueryMeta() and C_dfESPpubsubPersistModel() methods
as follows:

• The connectors listen for metadata requests on a special topic named
"urlhostport/M".

• The client sends formatted messages on this topic in request/reply fashion.

• The request messages are always sent using Deliver-To-One (for Solace) or a well-
known queue name with multiple consumers (for Rabbit MQ). This is to ensure that
no more than one ESP in the failover cluster handles the message.

• The response is sent back to the originator, and contains the same information
provided by the native publish/subscribe API.

Metadata Exchanges (Tervela)
The Tervela publish/subscribe API handles the C_dfESPpubsubQueryMeta()
method as follows:

• On start-up, appliance connectors publish complete metadata information about
special topic "SAS.META.host:port". This information includes the
“urlhostport” to engine mapping needed by the clients.

• On start-up, clients subscribe to this topic and save the received metadata and engine
mapping. To process a subsequent C_dfESPpubsubQueryMeta() request, the
client copies the requested information from the saved response(s).

The Tervela publish/subscribe API handles the C_dfESPpubsubPersistModel()
method as follows.

• Using the same global inbox scheme described previously, the appliance connectors
create a single cluster-wide inbox named “engine_meta”.

• The client derives the inbox name using the received “urlhostport” - engine
mapping, and sends formatted messages to this inbox in request/reply fashion.

• The response is sent back to the originator, and contains the same information
provided by the native publish/subscribe API.

412 Chapter 21 • Implementing 1+N-Way Failover

Required Software Components
Note the following requirements when you implement 1+N-way failover:

• The ESP model must implement the required Solace, Tervela, or RabbitMQ publish
and subscribe connectors. The subscribe connectors must have “hotfailover”
configured to enable 1+N-way failover.

• Client publisher and subscriber applications must use the Solace, Tervela, or
RabbitMQ publish/subscribe API provided with SAS Event Stream Processing. For
C or C++ applications, the Solace, Tervela, or RabbitMQ transport option is
requested by calling C_dfESPpubsubSetPubsubLib() before calling
C_dfESPpubsubInit(). For Java applications, the Solace, Tervela, or RabbitMQ
transport option is invoked by inserting dfx-esp-solace-api.jar, dfx-esp-tervela-
api.jar, or dfx-esp-rabbitmq-api.jar into the classpath in front of dfx-esp-api.jar.

• You must install the Solace, Tervela, or RabbitMQ run-time libraries on platforms
that host running instances of the connectors and clients. SAS Event Stream
Processing does not ship any appliance standard API libraries. The run-time
environment must define the path to those libraries (using LD_LIBRARY_PATH on
Linux platforms, for example).

Required Client Configuration
A Solace client application requires a client configuration file named solace.cfg in
the current directory to provide appliance connectivity parameters.

A Tervela client application requires a client configuration file named client.config
in the current directory to provide appliance connectivity parameters.

A RabbitMQ client application requires a client configuration file named
rabbitmq.cfg in the current directory to provide Rabbit MQ connectivity parameters.

See the documentation of the C_dfESPpubsubSetPubsubLib() publish/subscribe
API function for details about the contents of these configuration files.

Required Appliance Configuration (Rabbit MQ)
You must install the presence-exchange plug-in in order to use the Rabbit MQ server in a
1+N Way Failover topology. You can download the plug-in from https://github.com/
tonyg/presence-exchange.

Required Appliance Configuration (Solace)
For information about the minimum configuration required by a Solace appliance used
in a 1+N Way Failover topology, see “Using the Solace Systems Connector” on page
330.

Required Appliance Configuration (Solace) 413

Required Appliance Configuration (Tervela)
A Tervela appliance used in a 1+N Way Failover topology requires the following
configuration at a minimum:

• A client user name and password to match the connector’s tvauserid and
tvapassword configuration parameters.

• The inbound and outbound topic strings and associated schema. (See topic string
formats described previously.)

• Publish or subscribe entitlement rights associated with a client user name described
previously.

414 Chapter 21 • Implementing 1+N-Way Failover

Chapter 22

Running an Event Stream
Processing Engine in a Hadoop
YARN Container

Overview to YARN . 415

Starting the Server in the Hadoop YARN Container . 415

Managing the Event Stream Processing Server . 417

Connecting to an Event Stream Processing Server . 418

Overview to YARN
Hadoop YARN serves as a resource management framework to schedule and handle
computing resources for distributed applications. A Resource Manager manages the
global assignment of compute resources for an application. A per-application
Application Master manages an application’s scheduling and coordination. YARN
provides processing capacity to applications by allocating containers to them. Containers
encapsulate resource elements such as memory, CPU, and so on.

For more information about YARN, see the YARN documentation on the Apache
Software Foundation website.

Starting the Server in the Hadoop YARN
Container

To run an event stream processing server in a Hadoop YARN container, run the
following script to implement a YARN client.

$DFESP_HOME/bin/dfesp_yarn_joblauncher -e localdfesphome -a httpadminport
-u pubsubport <-q yarnqueue> <-p yarnpriority>
<-m yarnmemory> <-c yarncores>

Argument Description

-e
localdfesphome

Specify the $DFESP_HOME environment variable setting for SAS
Event Stream Processing installations on Hadoop nodes.

415

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/index.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/index.html

Argument Description

-a httpadminport Specify the value for the –http-admin argument on the
dfesp_xml_server command line. This port is opened when the
XML server is started.

-u pubsubport Specify the value for the –pubsub argument on the
dfesp_xml_server command line. This port is opened when the
XML server is started.

-t
httppubsubport

Specify the value for the –http-pubsub argument on the
dfesp_xml_server command line. This port is opened when the
XML server is started.

-q yarnqueue Specify the YARN Application Master queue. The default value is
default.

-p yarnpriority Specify the YARN Application Master priority. The default value is 0.

-m yarnmemory Specify the YARN Memory resource requirement for the Application
Master and event stream processing server containers

-c yarncores Specify the YARN Virtual Cores resource requirement for the
Application Master and event stream processing server containers.

-l Specify that the Application Master should use the /tmp/ESP/
log4j.properties file found in HDFS.

-o
consulthostport

Specify the host:port of a consult service.

The YARN client submits an Application Master and a script to run an SAS Event
Stream Processing XML server. The client also passes associated resource requirements
to the YARN Resource Manager.

The value of the environment variable DFESP_HADOOP_PATH must be the location of
Hadoop configuration files on the system where you execute
dfesp_yarn_joblauncher. This path must also point to location of the following
Hadoop JAR files, which are required by dfesp_yarn_joblauncher:

• hadoop-yarn-client-*.jar

• hadoop-yarn-api-*.jar

• hadoop-yarn-common-*.jar

• hadoop-common-*.jar

• hadoop-hdfs-*.jar

• hadoop-auth-*.jar

• supporting JAR files that are usually found in the hadoop/share/common/lib
directory

The ApplicationMaster submitted by dfesp_yarn_joblauncher is copied to and
executed from /tmp/ESP in HDFS, and is named “sas.esp.clients.yarn.*.*.jar”.

416 Chapter 22 • Running an Event Stream Processing Engine in a Hadoop YARN Container

Note: The Application Master is built using Java 1.7, so the Java run-time environment
on the Hadoop grid nodes must be compatible with that version. A SAS Event
Stream Processing installation must already exist on every node in the grid.

No model XML file is provided. The HTTP client must subsequently manage the model
run by the server.

The following command line is executed by the Application Master submitted by
dfesp_yarn_joblauncher:

dfesp_xml_server -http-admin http-admin port <-pubsub port> <—httppubsub port>
loglevel esp=info

By default, dfesp_yarn_joblauncher sets the following values for the Application
Master:

• YARN Queue = default

• YARN Priority = 0

• YARN Resources: Memory = 32768 MB, Virtual Cores = 4

You can override these values through optional arguments to
dfesp_yarn_joblauncher.

When launched, the Application Master requests one container in which to run the server
shell script. That container request specifies the same YARN resources as were requested
for the Application Master. Its defaults are 32768 MB and 4 virtual cores, unless you
have passed different values to dfesp_yarn_joblauncher. YARN might kill any
running process at any time when it exhausts its resources. Thus, you should tune these
memory and core requirements to match the requirements of the running model.

The event stream processing container runs on a Hadoop node that might or might not be
the node running the Application Master container.

You can invoke the dfesp_yarn_joblauncher again to launch additional event
stream processing servers, which all run independently and have no knowledge of any
other servers running on the grid.

Managing the Event Stream Processing Server
On successful start-up, the YARN Resource Manager web application should show an
entry where the Name column shows “ESP”. Make a note of the associated application
ID. Click the Tracking UI link to show the Application Master parameters. This URL
connects to a web server running in the event stream processing Application Master
itself.

Note the Master Host and Execution Host values. These are the nodes where the
Application Master and event stream processing server containers are running,
respectively. You can drill down to those specific nodes in the Node Manager. There,
follow the links for your application ID to find process logs for the Application Master
or event stream processing server.

If a failure occurs, the option to view logs depends on whether logging aggregation is
enabled on your YARN installation. If it is enabled, log on to any Hadoop node, navigate
to the local Hadoop installation, and run “/bin/yarn logs –
applicationId=ESP_application_id”. If it is disabled, log on to the individual
Hadoop node and find the yarn logs in the local Hadoop installation directories.

Managing the Event Stream Processing Server 417

To kill containers started by dfesp_yarn_joblauncher, log on to any Hadoop node,
navigate to the local Hadoop installation, and run /bin/yarn application –kill
ESP_application_id.

Connecting to an Event Stream Processing
Server

The http-admin and publish/subscribe ports opened by the XML server should be
reachable by devices outside of the Hadoop grid, if network connectivity is available.
The server host name is the name of the Hadoop node where the XML server is running
(shown in the Execution Host value displayed by the YARN Resource Manager).
The port is the http-admin or publish/subscribe port passed to the
dfesp_yarn_joblauncher script.

Clients connecting to this XML server do not know that the server is running in a YARN
container on a Hadoop node. Functional behavior is identical to a stand-alone server
running outside a Hadoop grid.

418 Chapter 22 • Running an Event Stream Processing Engine in a Hadoop YARN Container

Chapter 23

Using Design Patterns

Overview to Design Patterns . 419

Design Pattern That Links a Stateless Model with a Stateful Model 420

Controlling Pattern Window Matches . 421

Augmenting Incoming Events with Rolling Statistics . 422

Overview to Design Patterns
A design pattern is a reusable solution to a common problem within a specific context of
software design. This chapter provides design patterns to common problems encountered
in event stream processing application programming.

Event stream processing models can be stateless, stateful, or mixed. The type of model
that you choose affects how you design it. The combinations of windows that you use in
your design pattern should enable fast and efficient event stream processing. One
challenge when designing a mixed model is to identify sections that must be stateful and
those that can be stateless, and then connecting them properly.

A stateless model is one where the indexes on all windows have the type pi_EMPTY. In
this case, events are not retained in any window, and are essentially transformed and
passed through. These models exhibit fast performance and use very little memory. They
are well-suited to tasks where the inputs are inserts and when simple filtering,
computation, text context analysis, or pattern matching are the only operations required.

A stateful model is one that uses windows with index types that store data, usually
pi_RBTREE or pi_HASH. These models can fully process events with Insert, Update, or
Delete opcodes. A stateful model facilitates complex relational operations such as joins
and aggregations. Because events are retained in indexes, whenever all events are Inserts
only, windows grow unbounded in memory. Thus, stateful models must process a mix of
Inserts, Updates, and Deletes in order to remain bounded in memory.

The mix of opcodes can occur in one of two ways:

• The data source and input events have bounded key cardinality. That is, there are a
fixed number of unique keys in the input stream (such as customer IDs). There can
be many updates to these keys provided that the key cardinality is finite.

• A retention policy is enforced for the data flowing in, where the amount of data is
limited by time or event count. The data is then automatically deleted from the
system by the generation of internal retention delete events.

419

A mixed model has stateless and stateful parts. Often it is possible to separate the parts
into a stateless front end and a stateful back end.

Design Pattern That Links a Stateless Model with
a Stateful Model

To control memory growth in a mixed model, link the stateless and stateful parts with
copy windows that enforce retention policies. Use this design pattern when you have
insert-only data that can be pre-processed in a stateless way. Pre-process the data before
you flow it into a section of the model that requires stateful processing (using joins,
aggregations, or both).

For example, consider the following model:

Figure 23.1 Event Stream Processing Model with Insert-Only Data

Data Source
(Insert-only Data)

Aggregate
Window

Filter Window
(Drop Data)

Compute
Window

Here the data source is purely through Inserts. Therefore, the model can be made
stateless by using an index type of pi_EMPTY. The filter receives inserts from the
source, and drops some of them based on the filter criteria, so it produces a set of inserts
as output. Thus, the filter can be made stateless also by using an index type of
pi_EMPTY.

The compute window transforms the incoming inserts by selecting some of the output
fields of the input events. The same window computes other fields based on values of
the input event. It generates only inserts, so it can be stateless.

After the compute window, there is an aggregate window. This window type needs to
retain events. Aggregate windows group data and compress groups into single events. If
an aggregate window is fed a stream of Inserts, it would grow in an unbounded way.

420 Chapter 23 • Using Design Patterns

To control this growth, you can connect the two sections of the model with a copy
window with a retention policy.

Figure 23.2 Modified Event Stream Processing Model with Stateless and Stateful Parts

Data Source
(Insert-only Data)

Copy Window
with Retention

(Keep 1 hour of data)

Aggregate
Window

Stateful Part
of the Model

Stateless Part
of the Model

Filter Window
(Drop Data)

Compute
Window

The stateful part of the model is accurately computed, based on the rolling window of
input data. This model is bounded in memory.

Controlling Pattern Window Matches
Pattern matches that are generated by pattern windows are Inserts. Suppose you have a
source window feeding a pattern window. Because a pattern window generate Inserts
only, you should make it stateless by specifying an index type of pi_EMPTY. This
prevents the pattern window from growing infinitely. Normally, you want to keep some
of the more recent pattern matches around. Because you do not know how frequent the
pattern generates matches, follow the pattern window with a count-based copy window.

Controlling Pattern Window Matches 421

Suppose you specify to retain the last 1000 pattern matches in the copy window.

Figure 23.3 Event Stream Processing Model with Copy with Retention

Data Source
(Insert-only Data) Pattern Window

Copy Window
with Retention

(Keep last 1000 matches)

In cases like these, it is more likely that the copy window is queried from the outside
using adapters, or publish/subcribe clients. The copy window might also feed other
sections of the model.

Augmenting Incoming Events with Rolling
Statistics

Suppose you have an insert stream of events, and one or more values are associated with
the events. You want to augment each input event with some rolling statistics and then
output the augmented events. Solving this problem requires using advanced features of
the modeling environment.

For example, suppose you have a stream or stock trades coming in and you want to
augment them with the average stock price in the past. You build the following model.

Figure 23.4 Event Stream Processing Model Using Advanced Features

Source Window

Copy Window
(Keep last 15 minutes

of data)

Left

Right

Join Window
(Left Outer)

Aggregate Window
(Compute average)

To control the aggregate window:

• Put retention before it (the copy window).

• Group it by symbol (which is bounded), and use the additive aggregation function
average (ESP_aAve), which does not need to store each event for its computation.

422 Chapter 23 • Using Design Patterns

The join window can be problematic. Ordinarily you think of a join window as stateful.
A join retains data for its fact window or dimension window and performs matches. In
this case, you want a special, but frequently occurring behavior. When input comes in,
pause it at the join until the aggregate corresponding to the input is processed. Then link
the two together, and pass the augmented insert out.

To process input in this way:

1. Make the join a left outer join, with the source feed the left window, and the
aggregate feeds the right window.

2. Set Tagged Token data flow model on for the projects. This turns on a special feature
that causes a fork of a single event to wait for both sides of the fork to rejoin before
generating an output event.

3. Set the index type of the join to pi_EMPTY, making the join stateless. A stateless left
outer join does not create a local copy of the left driving window (FACT window). It
does not keep any stored results of the join. However, there is always a reference-
counted copy the lookup window. In the case of a left outer join, this is the right
window. The lookup window is controlled by retention in this case, so it is bounded.

4. Ordinarily, a join, when the dimension window is changed, tries to find all matching
events in the fact window and then issue updates for those joined matches. You do
not want this behavior, because you are matching events in lock step. Further, it is
simply not possible because you do not store the fact data. To prevent this
regeneration on each dimension window change, set the no-regenerates option
on the join window.

In this way you create a fast, lightweight join. This join stores only the lookup side, and
produces a stream of inserts on each inserted fact event. A stateless join is possible for
left and right outer joins.

The following XML code implements this model.

<engine port='52525' dateformat='%d/%b/%Y:%H:%M:%S'>
 <projects>
 <project name='trades_proj' pubsub='auto'
 use-tagged-token='true' threads='4'>
 <contqueries>
 <contquery name='trades_cq'>

 <windows>
 <window-source name='Trades'
 index='pi_RBTREE'>
 <schema>
 <fields>
 <field name='tradeID' type='string' key='true'/>
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='stamp'/>
 </fields>
 </schema>
 </window-source>

 <window-copy name='TotalIn'>
 <retention type='bycount_sliding'>5</retention>
 </window-copy>

Augmenting Incoming Events with Rolling Statistics 423

 <window-aggregate name='RunTotal'>
 <schema>
 <fields>
 <field name='tradeID' type='string'/>
 <field name='security' type='string' key='true'/>
 <field name='quantityTotal' type='double'/>
 </fields>
 </schema>
 <output>
 <field-expr>ESP_aLast(tradeID)</field-expr>
 <field-expr>ESP_aSum(quantity)</field-expr>
 </output>
 </window-aggregate>

 <window-join name='JoinTotal'
 index='pi_EMPTY'>
 <join type="leftouter"
 no-regenerates='true'>
 <conditions>
 <fields left='tradeID' right='tradeID'/>
 <fields left='security' right='security'/>
 </conditions>
 </join>
 <output>
 <field-selection name='quantity'
 source='l_quantity'/>
 <field-selection name='price'
 source='l_price'/>
 <field-selection name='traderID'
 source='l_traderID'/>
 <field-selection name='time'
 source='l_time'/>
 <field-selection name='quantityTotal'
 source='r_quantityTotal'/>
 </output>
 </window-join>
 </windows>

 <edges>
 <edge source='Trades'
 target='JoinTotal'/>
 <edge source='Trades'
 target='TotalIn'/>
 <edge source='TotalIn'
 target='RunTotal'/>
 <edge source='RunTotal'
 target='JoinTotal'/>
 </edges>

 </contquery>
 </contqueries>
 </project>
 </projects>
</engine>

424 Chapter 23 • Using Design Patterns

Chapter 24

Changing Models Dynamically

Overview . 425

Safeguards . 425

Window Modifications . 426
Insert a Window . 426
Delete a Window . 426
Replace a Window . 426
Replace an Aggregate Window . 426
Replace an Edge . 427

Restrictions . 427

Overview
You can change models that are running in the XML server by submitting a modified
XML project to the server.

Suppose you start a model, which might be connected to a data source through a
connector or adapter:

dfesp_xml_server -http-admin 62000 -pubsub 62001 -model
file://model.xml

Submit the modified model to the server:

dfesp_xml_client -url "http://localhost:62000/SASESP/projects/
project_01/state?value=modified&projectURL=file://model-
updated.xml" -put

The server compares the submitted project to the currently running project to determine
a sequence of Insert, Replace, and Delete window actions. It transforms the running
project into the submitted project.

Safeguards
The XML server attempts to force an all-or-nothing atomic update on the model by
checking for valid model changes before performing the low-level model changes.

425

• The updated project must pass XML schema validation.

• The updated project must pass run-time validation. A temporary project is created
using the updated project and the directed graph is traversed to determine whether all
run-time constraints are valid. This traversal ensures that the updated project will
start if it is simply loaded as a new project.

• The existing project and the updated project are compared. A sequence of project
changes is constructed. This sequence is checked to see whether any explicitly
disallowed change operations are present.

Window Modifications

Insert a Window
A new window is inserted into the directed graph and its edges are created. Any data that
can be obtained from the input windows of the new window are placed in the execution
queue of the new window to be immediately processed. There are no restrictions on
window insertion.

Delete a Window
You cannot delete a window that is participating in connector orchestration. There are no
restrictions to changing a window that has a connector when it is not part of connector
orchestration and has no output edges. Deletion of a window internal to a continuous
query forces the deletion of all windows farther down the directed graph. This is
accomplished by recursively deleting all windows that are output windows of the deleted
window. None of these windows can participate in connector orchestration. It is not
possible to delete a window from the middle of a continuous query without deleting its
children.

Replace a Window
You can replace one window with another as long as there are no connectors associated
with it. The replaced window must be of the same type and have the same name and the
same schema as the window being replaced. Replaced windows maintain the full state of
all indices. When the window being replaced has a retention policy, the new window
must have the same type of retention policy. However, you can change the retention
amount (number of time units or number of events). Expression calculations can also
change, as well as slot expressions. Incomplete pattern instances are lost.

Replace an Aggregate Window
When the old aggregate window is nonadditive, all aggregate functions can be changed.
The internal state for the aggregate is regenerated.

When the old aggregate window is additive, there are two possible cases:

• If the new replacement aggregate window does not change any aggregation
functions, all state is retained. Future operations on the new aggregate window
produce consistent results.

426 Chapter 24 • Changing Models Dynamically

• If some aggregations functions were changed, then the state for all the aggregate
functions is cleared. Aggregation effectively restarts with new events coming in.
This works for insert-only data, but in the case of non-insert-only data, the first
update or delete event causes the aggregate values to return NULL. There is no way
to compute the correct answer.

Replace an Edge
You can modify an edge if the only change is to the specified output slot.

Restrictions
The following project or query level changes are not allowed:

• changes to elements or attributes that are not windows or edges

• changes that involve only the adding or removal of edges

• the addition of a new edge whose target is an existing window

To further clarify, the dynamic service facility currently implements an add window call.
This call takes as parameters the new window and the parent windows of that new
window. The add window call implicitly creates edges from the parent windows to the
new window. There is no command to add an edge, so it is impossible to create a new
edge from any window to an existing window.

Restrictions 427

428 Chapter 24 • Changing Models Dynamically

Chapter 25

Using the Apache Camel
Framework

Overview . 429

Installing the Apache Camel Framework . 430

Installing the RabbitMQ Library . 431

SAS Event Stream Processing Implementation . 431

Using Camel Components in a Maven Project . 433

Configuring Endpoints . 433

Using Transformation Beans . 435

Examples . 436
Where to Find Examples . 436
CSV Injection . 436
Distributed Modeling . 436
RSS . 437
Weather . 438

Overview
The Apache Camel framework enables you to integrate different applications into a
single, cohesive architecture. Using the Apache Camel framework, you set up routes that
contain endpoints:

<route id="injectTrades" startupOrder="10">
 <from uri="systemA://someThing"/>
 <to uri="systemB://someOtherThing"/>
</route>

The “from” and “to” elements in the previous code are Apache Camel endpoints that
refer to components. Apache Camel supports many out-of-box components. It gives you
the tools to develop custom components. An Apache Camel Consumer maps to a “from”
endpoint, and an Apache Camel Producer maps to a “to” endpoint.

For more information about the Apache Camel framework, see the documentation.

429

http://camel.apache.org/documentation.html

Installing the Apache Camel Framework
In order to use the Apache Camel framework with SAS Event Stream Processing, you
must download and install various files. These include Apache components and specific
JAR files.

1. Access and install the following Apache components:

• Apache Camel, which you can download from http://camel.apache.org/

• Apache Maven, which you can download from https://maven.apache.org/

Apache Maven is a build environment that you can use to create projects that
leverage components from SAS Event Stream Processing. When you install Apache
Maven, make sure that you install the bin directory subordinate to your Maven
install directory in your path.

2. After you have installed the Apache components, install two JAR files into your
local Maven repository:

• ESP API Client JAR

• ESP Camel JAR

Note: You can find these JAR files in $DFESP_HOME/lib. They contain the client
API and the Camel components.

3. Install the JAR files into the Maven repository:

$ cd $DFESP_HOME/lib
$ mvn install:install-file -Dfile=dfx-esp-api.jar -DgroupId=com.sas.esp
-DartifactId=dfx-esp-api -Dversion=3.2 -Dpackaging=jar
$ mvn install:install-file -Dfile=dfx-esp-camel.jar -DgroupId=com.sas.esp
-DartifactId=dfx-esp-camel -Dversion=3.2 -Dpackaging=jar

4. After you have installed the JAR files, you can reference them from your Maven
project object model (pom.xml) file. You must have an entry for both the event
stream processing client API and the SAS Event Stream Processing Camel
components.

Here is the event stream processing client API entry:

<dependency>
 <groupId>com.sas.esp</groupId>
 <artifactId>dfx-esp-api</artifactId>
 <version>[3.2]</version>
</dependency>

Here is the SAS Event Stream Processing Camel entry:

<dependency>
<groupId>com.sas.esp</groupId>
 <artifactId>dfx-esp-camel</artifactId>
 <version>[3.1 or 3.2]</version>
</dependency>

430 Chapter 25 • Using the Apache Camel Framework

Installing the RabbitMQ Library
Configure the Maven project so that SAS Event Stream Processing uses RabbitMQ as an
alternative transport library:

1. Install the RabbitMQ API JAR:

$ cd $DFESP_HOME/lib
$ mvn install:install-file -Dfile=dfx-esp-rabbitmq-api.jar -DgroupId=com.sas.esp
-DartifactId=dfx-esp-rabbitmq-api -Dversion=3.2 -Dpackaging=jar

2. Update the Maven project object model (pom.xml) to include RabbitMQ dependency
information:

<dependency>
 <groupId>com.rabbitmq</groupId>
 <artifactId>amqp-client</artifactId>
 <version>3.5.6</version>
 </dependency>
 <dependency>
 <groupId>commons-configuration</groupId>
 <artifactId>commons-configuration</artifactId>
 <version>1.10</version>
 </dependency>
 <dependency>
 <groupId>com.sas.esp</groupId>
 <artifactId>dfx-esp-rabbitmq-api</artifactId>
 <version>3.2</version>
 </dependency>

Note: You must define the dependency for the RabbitMQ JAR (dfx-esp-rabbitmq-
api) in the pom.xml file before you define dependency for the ESP API Client JAR
(dfx-esp-api).

SAS Event Stream Processing Implementation
The SAS Event Stream Processing implementation consists of SAS Event Stream
processing Camel Endpoints that are either Consumers (which implement publish/
subscribe subscribers) or Producers (which implement publish/subscribe publishers). A
Consumer maps to a from endpoint, and a Producer maps to a to endpoint. For
example, to receive events from one publish/subscribe server and send them to another,
execute the following code:

...
<endpoint id="subscribe" uri="esp://espsrv01:46003">
 <property key="project" value="project" />
 <property key="contquery" value="query" />
 <property key="window" value="transform" />
</endpoint>

<endpoint id="publish" uri="esp://espsrv01:47003">
 <property key="project" value="project" />

SAS Event Stream Processing Implementation 431

 <property key="contquery" value="query" />
 <property key="window" value="trades" />
</endpoint>

<route>
 <from uri="ref:subscribe"/>
 <to uri="ref:publish" />
</route>
...

The SAS Event Stream Processing components can work with the following formats
representing events:

Format Description

Map<String,Object> A standard JAVA Map object in which the keys are
field names and the values are field values.

List<Map<String,Object>> A standard JAVA List of JAVA Map objects in which
the keys are field names and the values are field
values.

XML Event data in XML.

JSON Event data in JSON.

String Event data represented by a JAVA String. This is used
by a SAS Event Stream Processing Producer. If the
data comes in as a String, the producer can convert it
into either XML or JSON, depending on the endpoint
format property.

A SAS Event Stream Processing Consumer (subscriber) receives events and converts
them into one of these formats to send them along the route. A SAS Event Stream
Processing Producer (publisher) receives data in one of these formats, converts it into
events, and publishes them.

Through these standard formats, SAS Event Stream Processing easily integrates with
any of the other components available in the Camel framework and shares data with
them. If some transformation is required in order to get the data into the required format,
you can use a transformation bean between the endpoints.

Here is an example of transforming the standard comma-separated value event format
into one of the supported types:

...
<endpoint id="csvData" uri="stream:file">
 <property key="fileName" value="/mnt/data/share/tradesData/trades1M.csv" />
</endpoint>

<endpoint id="inject" uri="esp://espsrv01:46003">
 <property key="project" value="project" />
 <property key="contquery" value="query" />
 <property key="window" value="trades" />
</endpoint>

<route id="injectTrades" startupOrder="10">

432 Chapter 25 • Using the Apache Camel Framework

 <from uri="ref:csvData"/>
 <bean ref="csvTransform" method="transform" />
 <to uri="ref:inject"/>
</route>

<bean id="csvTransform" class="com.sas.esp.camel.transforms.CsvTransform">
 <property name="schema" value="id*:int64,symbol:string,currency:
int32,time:int64,msecs:int32,price:double,quant:int32,venue:int32,broker:
int32,buyer:int32,seller:int32,buysellflg:int32" />
 <property name="format" value="xml" />
</bean>

...

First create an endpoint called csvData to read the CSV data from a file. You also create
an endpoint called inject to inject this data into an ESP source window. The route that
you use goes from the file into SAS Event Stream Processing, but you must get the CSV
data into one of the supported formats.

To do this, create a bean called csvTransform, which requires a schema and an output
format. After that, you can form events from the CSV data and create an XML
Document to pass along the route. This is consumed by the Producer, which injects the
data into the specified source window. The method attribute for any of the SAS Event
Stream Processing transformation beans is always a transform.

Using Camel Components in a Maven Project
In order to reference the SAS Event Stream Processing Camel components by URI, you
must create the following file:

META-INF/services/org/apache/camel/component/esp

The file must contain the following line:

class=com.sas.esp.clients.camel.EspComponent

Note: This is described in further detail at http://camel.apache.org/writing-
components.html.

This enables you to reference the event stream processing components with a URI such
as the following:

<endpoint id="inject" uri="esp://<pub/sub host>:<pub/sub port>">

Configuring Endpoints
You must determine the host and port of the SAS Event Stream Processing publish/
subscribe server with which you are going to communicate. Use this information to
specify the URI of the component. For example, if your publish/subscribe server is
running on port 46003 on machine espsrv01, your URI is:

esp://espsrv01:46003

Because you are always putting events into or getting events out of windows, you also
must specify the project, continuous query, and window in which you are interested. You
can do this using either of the following methods:

Configuring Endpoints 433

add parameters to the URI

esp://espsrv01:46003?project=myproject&contquery=mycq&window=trades

specify an endpoint element with properties :

<endpoint id="inject" uri="esp://espsrv01:46003">
 <property key="project" value="project" />
 <property key="contquery" value="query" />
 <property key="window" value="trades" />
</endpoint>

The full set of properties that you can set on an endpoint are described in the following
table:

Property Description

Con
sum
er

Prod
ucer Valid Values

project The event stream processing
project.

x x A valid project.

contquery The event stream processing
continuous query.

x x A valid continuous
query.

window The event stream processing
window.

x x A valid window.

format The data format for this component.
This is usually used with a
Consumer to specify the format of
the event data to send down the
route. It can be used with a
Producer. If the component receives
a message with a body that is a
String, the producer uses the format
(either XML or JSON) for
conversion.

x x map, list, XML,
JSON

blocksize The size of the event blocks to
inject into a source window.

x Unsigned integer

blob The name of an event field that is
used to contain the entire message
body. If this property is set, the
Producer receives a message and
creates a MapMap<String,Object>
where the key is the field indicated
by the blob property. The value is
the entire message body represented
as a String. This data is injected into
the appropriate source window.

x A valid event field

434 Chapter 25 • Using the Apache Camel Framework

Using Transformation Beans
When data is not in a format immediately usable by the event stream processing
components, you must use a transformation bean to convert the data into a usable
format. You can use a transformation bean to convert events in the SAS Event Stream
Processing CSV format into a usable format. Place the transformation beans in a route
between the from and to endpoints.

Here is an example:

...
 <route id="injectTrades">
 <from uri="ref:csvData"/>
 <bean ref="csvTransform" method="transform" />
 <to uri="ref:inject"/>
 </route>

...

<bean id="csvTransform" class="com.sas.esp.camel.transforms.CsvTransform">
 <property name="schema" value="id*:int64,symbol:string,currency:
int32,time:int64,msecs:int32,price:double,quant:int32,venue:int32,broker:
int32,buyer:int32,seller:int32,buysellflg:int32" />
 <property name="format" value="xml" />
</bean>
...

Each bean takes certain parameters to help it convert the data to be usable by SAS Event
Stream Processing. The CSV transformation bean requires the event schema and the
output data format. Note that the bean lies between a “from” endpoint that contains a file
reference and a “to” endpoint to publish events into a window.

The transformation beans in the SAS Event Stream Processing Camel package are as
follows:

Class Description

com.sas.esp.clients.camel.transforms.CsvTran
sform

Transforms CSV data into ESP event data

schema
The event schema for the events
represented by the CSV data.

format
The data format to use to output events.
Valid values are map, list, XML, and
JSON.

com.sas.esp.clients.camel.transforms.RssTran
sform

Transforms RSS data into ESP event data

format
The data format to use to output events.
Valid values are list, XML, and JSON.

Using Transformation Beans 435

Examples

Where to Find Examples
A set of examples is available at $DFESP_HOME/examples/java/camel.

CSV Injection
This example reads trade data from a CSV file and injects the trades into the broker
surveillance model. It also subscribes to the brokerAlertsAggr window and outputs these
events to the console in JSON format.

1. Edit src/main/resources/esp.properties so that it contains your publish/
subscribe server information:

espServer=esp://espsrv01:46003
tradesFile=data/trades1M.csv

2. Start your ESP server:

$ dfesp_xml_server -model file://model.xml -http-admin <http admin port>
-http-pubsub <http pub/sub port> -pubsub <esp pub/sub port> -nocleanup

3. Start the project:

$ mvn camel:run

Distributed Modeling
This example distributes broker surveillance model between two servers. The first server
takes the trade data and performs all the dimensional additions (broker info, venue data)
to the event. This model is in primary.xml and ends with a functional window called
transform. The events generated by transform contain a full set of trade information. The
project subscribes to this window in server1 and forwards the events to server2, which
looks for the broker alerts. Another route is used to subscribe to brokerAlertsAggr
window in server2 and dump the events to the screen in Map format.

1. Edit src/main/resources/esp.properties so that it contains your publish/
subscribe server information:

espServer1=esp://espsrv01:46003
espServer2=esp://espsrv01:47003
tradesFile=data/trades1M.csv

2. Start your primary event stream processing server:

$ dfesp_xml_server -model file://primary.xml -http-admin <http admin port>
-http-pubsub <http pub/sub port> -pubsub <esp pub/sub port> -nocleanup

3. Start your secondary event stream processing server:

$ dfesp_xml_server -model file://secondary.xml -http-admin <http admin port>
 -http-pubsub <http pub/sub port> -pubsub <esp pub/sub port> -nocleanup

4. Start the project:

$ mvn camel:run

436 Chapter 25 • Using the Apache Camel Framework

RSS
This example uses the Camel RSS Component to set up a route that reads data from any
number of RSS feeds and injects them into SAS Event Stream Processing. You should
be able to add any RSS feeds to the route.

<route>
 <from uri="rss:http://feeds.reuters.com/reuters/businessNews" />
 <from uri="rss:http://feeds.reuters.com/reuters/topNews" />
 <from uri="rss:http://feeds.reuters.com/reuters/technologyNews" />
 <bean ref="rssTransform" method="transform" />
 <to uri="ref:publishNews" />
</route>

...

You can also use a new transformation bean to transform the RSS data into a supported
format:

<bean id="rssTransform" class="com.sas.esp.clients.camel.transforms.RssTransform">
 <property name="opcode" value="upsert" />
</bean>

...

In the following project, the RSS data is keyed by title:

<project name='project' pubsub='auto' threads='4'>
 <contqueries>
 <contquery name='cq' trace='src'>
 <windows>
 <window-source name='src'>
 <schema-string>title*:string,author:string,link:string,
description:string,categories:string,pubDate:date</schema-string>
 </window-source>
 </windows>
 </contquery>
 </contqueries>
</project>

...

1. Edit src/main/resources/esp.properties so that it contains your publish/
subscribe server information:

espServer=esp://espsrv01:46003

2. Start your event stream processing server:

$ dfesp_xml_server -model file://model.xml -http-admin <http admin port>
-http-pubsub <http pub/sub port> -pubsub <esp pub/sub port> -nocleanup

3. Start the project:

$ mvn camel:run

Examples 437

Weather
This example uses the Camel Weather Component to set up a route that reads weather
data for any number of locations and injects it into SAS Event Stream Processing. You
should be able to add any locations to the route. The locations can be defined as
endpoints as shown in the following example:

<endpoint id="cary" uri="weather:foo">
 <property key="location" value="cary,nc"/>
 <property key="mode" value="XML"/>
 <property key="units" value="IMPERIAL"/>
</endpoint>

<endpoint id="morehead" uri="weather:foo">
 <property key="location" value="moreheadcity,nc"/>
 <property key="mode" value="XML"/>
 <property key="units" value="IMPERIAL"/>
</endpoint>

<endpoint id="chapelHill" uri="weather:foo">
 <property key="location" value="chapelhill,nc"/>
 <property key="mode" value="XML"/>
 <property key="units" value="IMPERIAL"/>
</endpoint>

...

You can then add these endpoints to your route:

<route>
 <from uri="ref:cary"/>
 <from uri="ref:morehead"/>
 <from uri="ref:chapelHill"/>
 <to uri="ref:publishWeather"/>
</route>

...

1. Edit src/main/resources/esp.properties so that it contains your publish/
subscribe server information:

espServer=esp://espsrv01:46003

2. Start your event stream processing server:

$ dfesp_xml_server -model file://model.xml -http-admin <http admin port>
-http-pubsub <http pub/sub port> -pubsub <esp pub/sub port> -nocleanup

3. Start the project:

$ mvn camel:run

438 Chapter 25 • Using the Apache Camel Framework

Chapter 26

Authenticating Clients

Overview . 439

Server Requirements . 440

Client Requirements . 440

Token Validation . 441

CF UAA Client/Server Information . 442

Overview
You can require authentication for TCP/IP clients that connect to an event stream
processing engine. You must install the OpenSSL libraries on your event stream
processing server in order to implement authentication. You can install the SAS Event
Stream Processing Encryption and Authentication Overlay package to install OpenSSL.

Authentication applies to the following event stream processing engine APIs:

• the publish/subscribe API

• connections created by a client that uses the C or Java publish/subscribe API to
connect to an event stream processing engine

• connections created by an adapter that connects to an event stream processing engine

• the XML server HTTPS API

• connections created by the XML client (dfesp_xml_client) to communicate
with the XML server using the HTTPS protocol

To implement authentication, an event stream processing server must be enabled for
publish/subscribe operations.

When enabled on a server, authentication is a global and permanent setting, so all clients
that connect to that server must be authenticated. This applies to all client operations that
are supported by the publish/subscribe API. It also applies to queries and all other client/
server requests that establish a unique TCP connection. When authentication fails, a
client is disconnected and an error message is logged on both the client and server.

Similarly, a client that requests authentication to a server that is not enabled for
authentication results in client disconnection. There is a corresponding error message.

The supported authentication mechanism requires a signed JSON Web Token obtained
from an OAuth 2.0/OpenID Connect compliant server. This token is supplied to the

439

publish/subscribe API or adapter by the user. The token is then passed in compact
serialization form (base64url encrypted) from client to server. It is parsed and validated
by the server.

SAS Event Stream Processing requires that the token be obtained from a supported
OAuth server. This is currently limited to the CloudFoundry (CF) User Account and
Authentication (UAA) Server. You must request a token from the CF UAA server, and
then provide that token to the client.

For authentication certification, tokens are generated by invoking a REST request to a
locally installed CF UAA server through curl. The REST request invokes the implicit
grant with credentials flow. For more information, see the CF UAA documentation. For
an example, see “CF UAA Client/Server Information”.

The following resources provide more information:

• JSON web tokens: https://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

• OAuth 2.0: https://tools.ietf.org/html/rfc6749

• OpenID Connect: http://openid.net/specs/openid-connect-core-1_0.html

• CF UAA: https://github.com/cloudfoundry/uaa

Server Requirements
Authentication is enabled on an event stream processing server by passing a client ID
string when initializing the engine. In the C++ modeling API, this is a parameter in the
dfESPengine::initialize() call. To enable authentication, replace the current
pubsub_ENABLE(portNum) parameter with pubsub_ENABLE_OAUTH(portNum,
clientId).

When running an XML server, enable authentication by including the -auth
clientId command-line parameter.

This clientId must match the CF UAA client_id used when requesting a token from the
CF UAA server. For more information, see “Token Validation”.

In addition, the server must contain the public key used to sign the token in its local file
system in $DFESP_HOME/etc/oauth/pubkey.pem. For more information, see “Token
Validation”.

Any error in token validation causes the server to return an error code to the client. The
client then disconnects from the server.

Client Requirements
A client requests an authenticated connection by passing a token to the server. You can
provide the token to the client in one of two ways:

• Pass it in the publish/subscribe or adapter URL through the following optional
element:

?oauth_token

This element must follow the host:port part of the URL, as follows:

440 Chapter 26 • Authenticating Clients

dfESP:/host:port?oauth_token=token….. The remainder of the URL is the
same.

• Specify the complete path and filename of a file on the local file system that contains
the token. When using the publish/subscribe API, call the corresponding C or Java
publish/subscribe API method. The C method is
C_dfESPpubsubSetTokenLocation() , and the Java method is
setTokenLocation(). When running an adapter, use the corresponding optional
adapter configuration switch.

• When running an XML client, pass the token using the -auth-token or -auth-
token-url command-line parameter.

Using both methods simultaneously is not allowed. It generates a publish/subscribe API
error. The client passes the token opaquely to the server and waits for token validation
results. If successful, the connection is established and further client server operations
proceed normally. If unsuccessful, the client disconnects from the server.

Token Validation
The server validates multiple items in a received token:

Validated Item Description

Token Signature The server uses the OpenSSL libraries and the public key in
$DFESP_HOME/etc/oauth/pubkey.pem to verify the
signature in a received token. This public key must be the
same key as the public key in the public/private key pair that is
configured on the CF UAA server. You must generate, secure,
and manually copy this key to the server. For more
information, see “CF UAA Client/Server Information”.

Claims aud The client ID configured on the server
must match the aud claim contained in all
tokens received by the server. The value of
the aud claim in a token is determined by
the CF UAA client ID included in a
request to the CF UAA server to obtain
that token. A CF UAA administrator must
configure an event stream processing
specific client ID. You must specify that
same ID when you start an authentication-
enabled server. You must also specify that
ID when you request a token to be used by
a client connecting to that server. Server-
specific privileges can be enforced by
requiring server-specific client IDs for
connections to that server.

exp Token validation fails when the token is
expired.

user_name The user_name claim must be present
in the token, but the server does not
validate its value.

Token Validation 441

CF UAA Client/Server Information
The CF UAA server is an open-source package available from GitHub. After you install
it, the following additional administrative steps are highly recommended:

• Generate a new private key using OpenSSL (openssl genrsa -out
privkey.pem 1024, for example), and then generate a public key based on that
private key (openssl rsa -pubout -in privkey.pem -out
pubkey.pem, for example). Keep these keys secure.

• Configure the CF UAA token verification-key with the public key, and the CF UAA
token signing-key with the private key. Then copy the public key to all event stream
processing servers that should authenticate clients using tokens that are generated by
this CF UAA server.

• Configure one or more CF UAA client IDs restricted for use only by users running
an event stream processing server or client

• Register CF UAA user name and password credentials for users requiring tokens for
use by an event stream processing client.

Once configured, the steps required to obtain and use tokens for authenticated
connections are as follows:

• To connect a client to a specific server, obtain a token from a CF UAA server
configured with the same public key used by the event stream processing server. The
token request must contain the same CF UAA client ID that you used to enable
authentication on the server. You can choose the method of requesting a token from
CF UAA.

• Extract the token from the response and provide it to your client as described in
“Client Requirements”.

• You can reuse a single token indefinitely when connecting to the same server, as long
as that token remains unexpired.

Here is an example of a REST request invoked through curl to obtain a token from a CF
UAA server through an implicit grant with credentials:

curl -v -H "Accept: application/json" -H "Content-Type:
application/x-www-form-urlencoded" "http://myhost:8080/uaa/
oauth/authorize?
client_id=myclientid&response_type=token&scope=openid&redirect
_uri=http://localhost/hello" -d "credentials=%7B%22username
%22%3A%22myusername%22%2C%22password%22%3A%22mypassword%22%7D"

When the REST response contains a successful “302 Found” response, you can find the
token in the &access_token portion of the Location field of the REST response.

442 Chapter 26 • Authenticating Clients

Chapter 27

Implementing a K-means
Clustering Learning Model

Overview . 443

Parameters . 443

Overview
SAS Event Stream Processing provides an event stream processing model for the k-
means clustering algorithm at $DFESP_HOME/examples/xml/
procedural_kmeans.

The model is a simple pattern:

• a source window that receives the data to be scored

• a procedural window that generates and periodically updates the k-means clustering
model (training)

• a procedural window that performs the scoring.

Figure 27.1 Directed Graph of the K-means Clustering Model

Parameters
The entire model is controlled by parameters specified in the procedural (training)
window.

Parameter Description

nvars Number of analytical variables in the input stream (dimension)

443

Parameter Description

var_i Name of the ith analytical variable. (i=1,2,…, nvars)

nclusters Number of clusters (centroids) to report

init_seed Seed for random initialization of centroids

damping_factor Damped factor for old data

fadeout_factor Factor to determine whether an existing cluster is fading out

disturbance_factor Factor to split a cluster with disturbance if another cluster is fading
out

init_threshold Number of observations used for model initialization

commit_interval Number of new observations processed before every model update

444 Chapter 27 • Implementing a K-means Clustering Learning Model

Appendix 1

Interpreting Event Codes

An event is written to the event log when it cannot be processed because of a
computational failure. The format is

BE_CODE,TID,[Fully qualified window name],BAD_EVENT

The TID is a unique identifier for the event. The Fully qualified window name is the
engine, project, continuous query, and window that generated the bad event.
BAD_EVENT contains up to 255 bytes of the offending event in CSV format.

BE_CODE Description

1 An error collapsing an Insert event from a transactional event block when
trying to create a canonical set of events for a key.

2 An error collapsing an Update event from a transactional event block when
trying to create a canonical set of events for a key.

3 An error collapsing a Delete event from a transactional event block when
trying to create a canonical set of events for a key.

4 A bad opcode received from a transactional event block when trying to create a
canonical set of events for a key.

5 An error collapsing an Insert event from a normal event block when trying to
create a canonical set of events for a key.

6 An error collapsing an Update block event from a normal event block when
trying to create a canonical set of events for a key.

7 An error collapsing a Delete event from normal event block when trying to
create a canonical set of events for a key.

8 A bad opcode received from a normal event block when trying to create a
canonical set of events for a key.

9 A bad opcode received from a normal event block when trying to create a
canonical set of events for a key.

10, 11, 12 Not used

13 An Insert event from a normal event block could not be processed, possibly
because of a duplicate key.

445

BE_CODE Description

14 An Update event from a normal event block could not be processed, possibly
because the key could not be found.

15 An Upsert event from a normal event block could not be processed, possibly
because of an insert with a partial update.

16 A Delete event from a normal event block could not be processed, possibly
because the key could not be found.

17 A bad opcode received from a normal event block.

18 An Insert event from a transactional event block could not be processed ,
possibly because of a duplicate key.

19 An Update event from a transactional event block could not be processed,
possibly because the key could not be found.

20 An Upsert event from a transactional event block could not be processed,
possibly because of an insert with a partial update.

21 A Delete event from a transactional event block could not be processed,
possibly because the key could not be found.

22 A bad opcode received from a transactional event block.

23 A window set to insert only received a non-insert event.

24 A bad opcode received in window compute.

25 An event received with a NULL in a key field.

26 An event generated a floating point exception.

27 An event failed to compute due to a general error.

446 Appendix 1 • Interpreting Event Codes

Appendix 2

Performance Tips

The following settings and options can potentially improve the performance of your
project. You should implement these options wherever applicable.

• Use event blocks containing multiple events in publish/subscribe clients.

• Use binary events when publishing events to a project.

• Use full concurrency on the projects to allow data to be processed by a window as
soon as it is received. Define multiple threads to the project.

• Set pubsub=manual for the project. Enable publish/subscribe only on windows
that have publishers or subscribers.

• When a join window is a many-to-many join, enable secondary indices on the join
window. This eliminates a scan of the join tables each time that an event is received.

• A fork join is a join where the same event is split for some processing and then
rejoined before continuing on the directed graph. When a fork join is a one-to-many
or many-to-one join, enable secondary indices. This eliminates a scan of the join
tables each time that an event is received.

If your project still experiences performance degradation after applying all of the
applicable settings and options, use the following options to determine the location of
the performance bottleneck. You must have a baseline for the expected number of events
to be processed and how fast an event is processed by the project.

1. Use counter windows to determine the rate of events published to the project and
output to subscribers of the project. Connect a counter window to the source
windows and to any window that has a subscriber. If the rate of events published to
the source windows is too low, investigate the publishers. If the rate of events from
the subscriber windows is the expected value, investigate how the subscribers are
consuming events.

2. If counter windows show that the performance bottleneck is inside the project, turn
on the timing-threshold=xx microseconds option for the project. A warning
message is logged when a window takes longer than the specified interval to process
an event or event block. Use the warning messages to identify the windows that
affect performance and investigate what flows through those windows.

447

448 Appendix 2 • Performance Tips

Appendix 3

Functional Window and
Notification Window Support
Functions

Dictionary . 451
ABS . 451
AND . 451
BASE64DECODE . 452
BASE64ENCODE . 452
BETWEEN . 453
BOOLEAN . 453
CEILING . 454
COMPARE . 455
CONCAT . 455
CONCATDELIM . 456
CONTAINS . 456
DECREMENT . 457
DIFF . 457
EQUALS . 458
EVENTNUMBER . 458
FALSE . 459
FLOOR . 459
GT . 460
GTE . 460
GUID . 461
INCREMENT . 461
IF . 462
IFNEXT . 462
INDEX . 463
INDEXOF . 464
INPUT . 464
INTEGER . 464
ISNULL . 465
ISSET . 465
INTERVAL . 466
JSON . 467
LASTINDEXOF . 467
LISTITEM . 468
LISTSIZE . 468
LONG . 469
LT . 469
LTE . 470
MAPVALUE . 471
MAPVALUES . 471
MAX . 472

449

MEAN . 472
MIN . 473
MOD . 473
NEG . 474
NORMALIZESPACE . 474
NEQUALS . 475
NOT . 475
NUMBER . 476
OR . 476
OUTPUT . 477
OUTSTR . 477
PRECISION . 478
PRODUCT . 478
QUOTIENT . 479
RANDOM . 479
RGX . 479
RGXINDEX . 480
RGXLASTTOKEN . 481
RGXMATCH . 481
RGXREPLACE . 482
RGXREPLACEALL . 482
RGXTOKEN . 483
RGXV . 483
ROUND . 484
SETCONTAINS . 485
STARTSWITH . 485
STRING . 486
STRINGLENGTH . 486
STRIP . 487
SUBSTRING . 487
SUBSTRINGAFTER . 488
SUBSTRINGBEFORE . 488
SUM . 489
SWITCH . 489
SYSTEMMICRO . 490
SYSTEMMILLI . 490
TIMECURRENT . 490
TIMEDAYOFMONTH . 490
TIMEDAYOFWEEK . 491
TIMEDAYOFYEAR . 491
TIMEGMTTOLOCAL . 492
TIMEGMTSTRING . 492
TIMEHOUR . 492
TIMEMINUTE . 493
TIMEMINUTEOFDAY . 493
TIMEPARSE . 494
TIMESECOND . 494
TIMESTAMP . 495
TIMESTRING . 495
TIMESECONDOFDAY . 495
TIMETODAY . 496
TIMEYEAR . 496
TOLOWER . 497
TOUPPER . 497
TRANSLATE . 497
TRUE . 498

450 Appendix 3 • Functional Window and Notification Window Support Functions

URLDECODE . 498
URLENCODE . 499
XPATH . 499

Dictionary

ABS
Returns the absolute floating-point value of the supplied argument.

Syntax
abs(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
abs(-55)=55
abs(44)=44

AND
When both arguments are true, returns true. Otherwise, returns false.

Syntax
and(argument1, argument2)

Required Argument
argument1, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

AND 451

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

• If the argument returns a numeric value, then the function returns true when the
numeric value is nonzero, otherwise it returns false.

• If the argument returns a string value:

• When the string value is 'true', the function returns true.

• When the string value is 'false', the function returns false.

• Else, when the length of the string is > 0, the function returns true, otherwise
false.

Example
and(gt(3,2),gt(2,5))=0
and(gt(3,2),gt(12,5))=1
and(0,1)=0
and('non empty string',55)=1
and('true',55)=1
and('',4)=0

BASE64DECODE
Decodes the supplied base64-encoded string.

Syntax
base64Decode(string)

Required Argument
string

specifies a base64–encoded string. There is no length limit to this string.

Example
base64Decode('dGhpcyBpcyBhIHRlc3Q=')=this is a test

BASE64ENCODE
Encodes the supplied string into a base64–encoded string.

Syntax
base64Encode(string)

452 Appendix 3 • Functional Window and Notification Window Support Functions

Required Argument
string

specifies a text string. There is no length limit to this string.

Example
base64Encode('this is a test')=dGhpcyBpcyBhIHRlc3Q=

BETWEEN
If the first argument is greater than the second and less than the third, returns true. Otherwise, returns
false.

Syntax
between(argument1, argument2, argument3)

Required Argument
argument1, argument2, argument3

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
between(20,17,30)=1
between(20,17,15)=0

BOOLEAN
If the supplied argument is a string, returns true when the string has length greater than 0. If the supplied
argument is numeric, returns true when value is not equal to 0. If the supplied argument is a Boolean
expression, returns true when the value is true. Otherwise, returns false.

Syntax
boolean(argument)

Required Argument
argument

specifies one of the following:

BOOLEAN 453

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Note: The special string values ‘true’ and ‘false’ are handled outside the
string length > 0. If ‘true’, the function returns 1. If ‘false’, the function
returns 0.

Example
boolean('my string')=1
boolean('')=0
boolean(10)=1
boolean(0)=0
boolean(gt(4,7))=0
boolean(gt(7,5))=1

CEILING
Returns the integer value above the numeric value of the supplied argument.

Syntax
ceiling(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
ceiling(product(4,4.1))=17

454 Appendix 3 • Functional Window and Notification Window Support Functions

COMPARE
Compares the first argument to the second. If the first argument is less than the second, then it returns -1.
If the first is greater than the second, then it returns 1. If the first is equal to the second, then it returns 0.

Syntax
compare(argument1, argument2)

Required Argument
argument1, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

The type of the first argument determines whether equality is determined by a string
or numeric comparison.

Example
compare('bears','lions')=-1
compare('lions','bears')=1
compare('bears','bears')=0
compare(10,20)=-1
compare(20,10)=1
compare(10,10)=0

CONCAT
Returns a string that is the concatenation of the string values of the supplied arguments.

Syntax
concat(argument1, argument2,…<argumentN>)

Required Argument
argument1, …argumentN

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

CONCAT 455

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

A minimum of two arguments is required.

Example
concat('Name: ','Joe',', Age: ',floor(sum(25,10)),'.') = Name: Joe, Age: 35.

CONCATDELIM
Returns a string that is the concatenation of the supplied values separated by the specified delimiter.

Syntax
concatDelim(‘delimiter’,argument1, argument2, …<argumentN>)

Required Arguments
‘delimiter’

specifies a character used as a delimiter.

argument1, …argumentN
specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
concatDelim('.','www','sas','com') = www.sas.com

CONTAINS
If the string value of the first argument contains the string value of the second, then it returns true.
Otherwise, it returns false.

Syntax
contains(argument1, argument2)

456 Appendix 3 • Functional Window and Notification Window Support Functions

Required Argument
argument1, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
contains('www.sas.com','sas') = true
contains('www.google.com','sas') = false

DECREMENT
Returns the numeric value of the supplied argument minus 1. This function supports only integers.

Syntax
decrement(argument)

Required Argument
argument

specifies an integer.

Example
decrement(10)=9

DIFF
Returns the value of the first argument minus the second.

Syntax
diff(argument1, argument2)

Required Argument
argument1, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

DIFF 457

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
diff(sum(8,7),22)=-7.0

EQUALS
Returns true if the first argument is equal to the second. Otherwise, it returns false.

Syntax
equals(argument1, argument2)

Required Argument
argument1, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

The type of the comparison depends on the type of the first argument.

Example
equals('sas.com',string('sas','.com'))=1
equals('sas.com','google.com')=0
equals(10,sum(5,5))=1

EVENTNUMBER
Returns the 0–based number of events that are generated by the current incoming event. The number is
incremented each time that the function is invoked.

Syntax
eventNumber()

458 Appendix 3 • Functional Window and Notification Window Support Functions

Example
string($id,'-',eventNumber())=eventid-0
string($id,'-',eventNumber())=eventid-1
string($id,'-',eventNumber())=eventid-2

FALSE
Returns true if the Boolean value of the argument is false. Otherwise, it returns true.

Syntax
false(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
false(0)=1
false(equals(10,10))=0

FLOOR
Returns the integer value below the numeric value of the supplied argument.

Syntax
floor(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

FLOOR 459

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
floor(product(3.5,7))=24

GT
Returns true if the first argument is greater than the second. Otherwise, it returns false.

Syntax
gt(argument, argument2)

Required Argument
argument, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

The type of the comparison depends on the type of the first argument.

Example
gt(sum(10,4),13)=true
gt('internet explorer','internet explorer')=false
gt('internet explorer','netscape')=false

GTE
Returns true if the first argument is greater than or equal to the second. Otherwise, it returns false.

Syntax
gt(argument, argument2)

Required Argument
argument, argument2

specifies one of the following:

460 Appendix 3 • Functional Window and Notification Window Support Functions

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

The type of the comparison depends on the type of the first argument.

Example
gte(sum(10,4),13)=true
gte('internet explorer','internet explorer')=true
gte('netscape','internet explorer')=true

GUID
Returns a globally unique identifier.

Syntax
guid()

Example
guid()=46ca7b9e-b11d-41be-a3eb-be8bc8553aed
guid()=319cd2a6-1b30-4c1b-8ac7-55e9465ea066

INCREMENT
Returns the numeric value of the first argument + 1. This function only supports integers.

Syntax
increment(argument)

Required Argument
argument

specifies an integer value or a function that returns an integer value.

Example
increment(10)=11

INCREMENT 461

IF
If the Boolean value of the first argument is true, returns the second argument. Otherwise, it returns the
third argument if specified.

Syntax
if(argument1 , argument2, <argument3>)

Required Arguments
argument1

specifies a Boolean expression

argument2,
specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Optional Argument
argument3

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
if(equals('x','x'),'one','two')=one
if(equals('x','y'),'one','two')=two
if(equals('x','y'),'one')=

IFNEXT
Evaluates the first argument in a pair. When the argument evaluates to true, the function returns the value
of the second argument in the pair.

462 Appendix 3 • Functional Window and Notification Window Support Functions

Syntax
ifNext(argument , argument2, …<argumentN>, <argumentN+1>)

Required Arguments
argument

specifies a Boolean expression.

argument2
specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
ifNext(gt(20,10),'value 1',lt(20,10),'value 2')=value 1
ifNext(gt(20,100),'value 1',lt(20,100),'value 2')=value 2

INDEX
Returns the value of argumentN, where N is the numeric value of specified index.

Syntax
index(index , argument0, …<argumentN>)

Required Arguments
index

specifies an integer or a function that returns an integer.

argument0, argument1, …argumentN
specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

The minimum number of arguments is 2.

INDEX 463

Example
index(1,'larry','moe','curly')=moe
index(random(0,4),10,20,30,40,50)=40
index(random(0,4),10,20,30,40,50)=20

INDEXOF
Returns the 0–based index of the string value of the first argument in the string value of the second
argument. Returns -1 if the value is not found.

Syntax
indexOf(argument1 , argument2)

Required Argument
argument1, argument2

specifies a string.

Example
indexOf('SAS Event Stream Processing','Stream')=10
indexOf('SAS Event Stream Processing','Google')=-1

INPUT
Returns the name of the event stream processing input window.

Syntax
input()

Example
input()=sourceWindow

INTEGER
Returns the integer value of the argument.

Syntax
integer(argument)

464 Appendix 3 • Functional Window and Notification Window Support Functions

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
integer('88.45')=88
integer(111.23)=111

ISNULL
Returns true if the argument is not set, otherwise it returns false.

Syntax
isNull(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
isNull($unresolved)=1
isNull('my string')=0

ISSET
Returns true if the argument is set, otherwise it returns false.

ISSET 465

Syntax
isSet(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
isSet($unresolved)=0
isSet('my string')=1

INTERVAL
Takes the numeric value of the first argument and compares it to the numeric values of all remaining
arguments. If the numeric value of the first argument is less than one of the arguments that follow, then the
value of the argument that follows that one is returned.

Syntax
interval(argument , argument2, argument3, …<argumentN>)

Required Argument
arguments

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
interval(85,60,'F',70,'D',80,'C',90,'B','A')=B
interval(90,60,'F',70,'D',80,'C',90,'B','A')=A

466 Appendix 3 • Functional Window and Notification Window Support Functions

JSON
Parses the JSON object specified in the first argument and returns a value as a function of the second
argument.

Syntax
json(argument , argument2)

Required Arguments
argument

specifies a JSON object.

argument2
specifies an evaluation string. In a name value pair, specify the name of the object
whose value you want to return.

Example
json('{first:"john",last:"smith",hobbies:["running","reading","golf"]}',
 'first')=john
json('{first:"john",last:"smith",hobbies:["running","reading","golf"]}',
 'last')=smith
json('{first:"john",last:"smith",hobbies:["running","reading","golf"]}',
 'hobbies[1]')=reading
json(#myJson,'hobbies[1]')=reading

LASTINDEXOF
Returns the last index of the string value of the second argument in the string value of the first, or -1 if the
value is not found.

Syntax
lastIndexOf(argument , argument2)

Required Argument
argument, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

LASTINDEXOF 467

Example
lastIndexOf('http://www.sas.com/products/webanalytics','/')=27

LISTITEM
This function has two uses. 1) Parses the first argument using the specified delimiter and then returns the
value at the specified index. 2) References an existing list in the specified function context and returns its
value at the specified index.

Syntax
listItem(argument , delimiter, index)
listItem(reference , index)

Required Arguments
argument

specifies a delimited string.

delimiter
specifies a character used as a delimiter.

index
specifies a numeric value used as an index.

reference
specifies a reference to a function context.

Example
listItem('one,two,three,four',',',2)=three
listItem(#myList,0)=one

LISTSIZE
This function has two uses. 1) Parses the first argument using the specified delimiter and then returns its
size. 2) References an existing list in the specified function context and returns its size.

Syntax
listSize(argument , delimiter)
listSize(reference)

Required Arguments
argument

specifies a delimited string.

delimiter
specifies a character used as a delimiter.

468 Appendix 3 • Functional Window and Notification Window Support Functions

reference
specifies a reference to a function context.

Example
listSize('one,two,three,four',',')=4
listSize(#myList)=4

LONG
Returns the long value of the argument.

Syntax
long(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
long('88.45')=88
long(111.23)=111

LT
Returns true if the first argument is less than the second. Otherwise, returns false.

Syntax
lt(argument , argument2)

Required Arguments
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

LT 469

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

argument2
specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
lt(sum(10,4),13)=false
lt('internet explorer','internet explorer')=true
lt('internet explorer','netscape')=true

LTE
Returns true if the first argument is less than or equal to the second. Otherwise, returns false.

Syntax
lt(argument , argument2)

Required Argument
argument, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
lte(sum(10,3),13)=true
lt('internet explorer','internet explorer')=true
lt('internet explorer','netscape')=true

470 Appendix 3 • Functional Window and Notification Window Support Functions

MAPVALUE
This function has two uses. 1) Parses name-value pairs from the first argument using the specified outer
delimiter and the specified inner delimiter, and then extracts the value for the specified name. 2)
References an existing value map in the referenced function context, and then extracts the value for the
name.

Syntax
mapValues(argument , outerdelimiter, innerdelimiter, delimiter, name)
mapValues(#reference, name)

Required Arguments
argument

specifies a delimited string of name-value pairs.

outerdelimiter, innerdelimiterdelimiter
specifies characters used as delimiters.

name
specifies the name in the name-value pair specified in argument.

#reference
specifies a reference to a function context.

Example
mapValue('first:John;last:Doe;occupation:plumber',';',':','occupation')=plumber
mapValue(#myMap,'occupation')=plumber

MAPVALUES
This function has two uses. 1) Parses name-value pairs from the first argument using the specified outer
delimiter and the specified inner delimiter, and then extracts the values for each specified name. 2)
References an existing value map in the referenced function context and extracts the values for each
specified name.

Syntax
mapValues(argument , outerdelimiter, innerdelimiter, delimiter, name1,…<nameN>)
mapValues(#reference, name1, …<nameN>)

Required Arguments
argument

specifies a delimited string of name-value pairs.

outerdelimiter, innerdelimiterdelimiter
specifies characters used as delimiters.

MAPVALUES 471

name1, …nameN
specifies the name in the name-value pair specified in argument.

#reference
specifies a reference to a function context.

Example
mapValues('first=John,last=Doe',',','=',':','first','last')=John:Doe
mapValues(#myMap,'first','last')=John:Doe

MAX
Returns the largest numeric value of all specified arguments.

Syntax
max(argument , argument2, …<argumentN>)

Required Argument
argument, argument2, …argumentN

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

The minimum number of arguments is 1.

Example
max(33,44.2,sum(1,3,2,12),-33.21)=44.2

MEAN
Returns the mean value of all specified arguments.

Syntax
mean(argument , argument2, …<argumentN>)

Required Argument
argument, argument2, …argumentN

specifies one of the following:

472 Appendix 3 • Functional Window and Notification Window Support Functions

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
mean(33,44.2,sum(1,3,2,12),-33.21)=15.4975

MIN
Returns the smallest numeric value of all specified arguments.

Syntax
min(argument , argument2, …<argumentN>)

Required Argument
argument, argument2, …argumentN

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

The minimum number of arguments is 1.

Example
min(33,44.2,sum(1,3,2,12),-33.21)=-33.21

MOD
Returns the remainder of the first argument divided by the second.

Syntax
mod(argument , argument2)

MOD 473

Required Argument
argument, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
mod(10,3)=1.0

NEG
Returns the negative numeric value of the specified argument.

Syntax
neg(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
neg(55)=-55

NORMALIZESPACE
Returns a string that is created by replacing any extra white space in the specified argument with a single
space.

474 Appendix 3 • Functional Window and Notification Window Support Functions

Syntax
normalizeSpace(argument)

Required Argument
argument

specifies a string.

Example
normalizeSpace('Sentence with many spaces')=Sentence with many spaces

NEQUALS
Returns true if the first argument is not equal to the second. Otherwise, returns false.

Syntax
nequals(argument , argument2)

Required Argument
argument, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
nequals('sas.com',string('sas','.com'))=0
nequals('sas.com','google.com')=1
nequals(10,sum(5,5))=0

NOT
Returns true if the Boolean value of the argument is false. Otherwise, returns false.

Syntax
not(argument)

NOT 475

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
not(0)=1
not(equals(10,10))=0

NUMBER
Returns the numeric value of the argument.

Syntax
number(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
number('88.45')=88.45
number(111.23)=111.23
number(gt(2,1))=1

OR
Returns true if any of the supplied arguments are true. Otherwise, returns false.

476 Appendix 3 • Functional Window and Notification Window Support Functions

Syntax
or(argument , argument2, …<argumentN>)

Required Argument
argument, argument2, …argumentN

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

The minimum number of arguments is 1.

Example
or(equals('a','b'),nequals('a','b'))=1
or(equals('a','b'),nequals('a','a'))=0

OUTPUT
Returns the name of the event stream processing output window.

Syntax
output()

Example
input()=myFunctionalWindow

OUTSTR
If the argument contains a string or one of a group of strings, returns the associated value. If there are no
matches, returns a specified default value.

Syntax
outstr(argument , string1, value_associated_with_string1,
…<stringN>, <value_associated_with_stringN>, default)

Required Arguments
argument

specifies a string.

OUTSTR 477

string1…stringN
specifies a string or group of strings.

value_associated_with_string1…value_associated_with_stringN
specifies a string or group of strings.

default
specifies a string or group of strings.

Example
outstr('government spending','govern','Government','Other')=Government
outstr('spending',('govern','spend'),
 'Government or Spending','Other')=Government or Spending
outstr('bob',('govern','spend'),'Government or Spending',
 ('john','jack','bob'),'Names','Other')=Names
outstr('stream processing',('govern','spend'),'Government or Spending',
 ('john','jack','bob'),'Names','Other')=Other

PRECISION
Sets the decimal point precision of the first argument to the second argument.

Syntax
precision(argument , argument2)

Required Argument
argument, argument2

specifies a numeric value.

Example
precision(123.44567,2)=123.45

PRODUCT
Returns the product of the supplied arguments.

Syntax
product(argument , argument2…<argumentN>)

Required Argument
argument, argument2, … argumentN

specifies a numeric value or a function that returns a numeric value.

478 Appendix 3 • Functional Window and Notification Window Support Functions

Example
product(3,sum(2,4),2)=36

QUOTIENT
Returns the quotient of the supplied arguments.

Syntax
quotient(argument , argument2…<argumentN>)

Required Argument
argument, argument2, … argumentN

specifies a numeric value or a function that returns a numeric value.

Example
quotient(3,sum(2,4),2)=0.25

RANDOM
Returns a random number between the first argument and the second.

Syntax
random(argument , argument2)

Required Argument
argument, argument2

specifies a numeric value.

Example
random(100,1000)=741
random(100,1000)=356
random(100,1000)=452
precision(random(0,.5),2)=0.17

RGX
Runs the specified regular expression on a supplied string and returns the result. If a group is specified, the
result is the content of the specified numeric regular expression group.

RGX 479

Syntax
rgx(regular_expression , string…<group>)

Required Arguments
regular_expression

specifies a regular expression or a reference to a regular expression in the function
context.

string
specifies a string.

Optional Argument
group

specifies a numeric reference to the regular expression.

Example
rgx('.*/view/([0-9]*)/([0-9]*)',
 'http://cistore-dev.unx.sas.com/products/view/23/4',
 1)=23
rgx(#myExpr,
 'http://cistore-dev.unx.sas.com/products/view/23/4'
 ,2)=4

RGXINDEX
Runs the specified regular expression on a supplied string. When a match is found, returns the index of the
match. If no match is found, returns -1.

Syntax
rgxIndex(regular_expression , string…<stringN>)

Required Arguments
regular_expression

specifies a regular expression or a reference to a regular expression in the function
context.

string…stringN
specifies a string.

Example
rgxIndex('developer','larry - manager','moe - tester','curly - developer')=2

480 Appendix 3 • Functional Window and Notification Window Support Functions

RGXLASTTOKEN
Uses the regular expression in the first argument as a delimiter within the regular expression of the second
to find all strings separated by that expression.

Syntax
rgxLastToken(regular_expression1 , regular_expression2…<index_value>)

Required Arguments
regular_expression1

specifies a regular expression or a reference to a regular expression in the function
context.

regular_expression2
specifies a regular expression.

Optional Argument
index_value

specifies an index value (defaults to 0) that counts from the last token in the
expression. When this value is greater than 0 and less than or equal to the number of
tokens in the regular expression, the token at the value is returned. Otherwise, null is
returned.

Example
rgxLastToken('/','data/opt/sas/dataflux')=dataflux
rgxLastToken('/','data/opt/sas/dataflux',2)=opt
rgxLastToken('\.','www.sas.com')=com

RGXMATCH
Compares the regular expression in the first argument to the second argument and returns a Boolean
value that indicates whether a match is found.

Syntax
rgxMatch(regular_expression1 , string…<group>)

Required Arguments
regular_expression1

specifies a regular expression or a reference to a regular expression in the function
context.

string
specifies a string.

RGXMATCH 481

Optional Argument
group

specifies a numeric reference to the regular expression. When specified, the result is
the content of the specified numeric regular expression group.

Example
rgxMatch('(google|yahoo|bing)','http://www.google.com')=1
rgxMatch('(google|yahoo|bing)','http://www.sas.com')=0

RGXREPLACE
Parses the regular expression in the first argument against the string in the second argument and replaces
the first match with the string in the third argument.

Syntax
rgxReplace(regular_expression1 , string1, string2)

Required Arguments
regular_expression1

specifies a regular expression or a reference to a regular expression in the function
context.

string
specifies a string.

string2
specifies a string.

Example
rgxReplace('(google|yahoo|bing)','http://www.google.com','sas')=http://www.sas.com

RGXREPLACEALL
Parses the regular expression in the first argument against the string in the second argument and replaces
any match with the string in the third argument.

Syntax
rgxReplaceAll(regular_expression1 , string1, string2)

Required Arguments
regular_expression1

specifies a regular expression or a reference to a regular expression in the function
context.

482 Appendix 3 • Functional Window and Notification Window Support Functions

string
specifies a string.

string2
specifies a string.

Example
rgxReplaceAll('(google|yahoo|bing)','http://www.google.com/google/products','sas')
 =http://www.sas.com/sas/products

RGXTOKEN
Uses the first argument as a delimiter within the second argument to find all strings separated by that
delimiter.

Syntax
rgxToken(delimiter , string, <index>)

Required Arguments
delimiter

specifies a regular expression or a reference to a regular expression in the function
context.

string
specifies a string.

index
specifies a numeric value that serves as an index when parsing the string. If the index
is less than or equal to the number of tokens in the string, the token at the index value
is returned. Otherwise, null is returned. The default value is 0.

Example
rgxToken('/','data/opt/sas/dataflux')=data
rgxToken('/','data/opt/sas/dataflux',2)=sas
rgxToken('\.','www.sas.com')=www

RGXV
Parses the regular expression in the first argument against the string in the second argument and returns
all matches delimited by the specified delimiter.

Syntax
rgxV(regular_expression , string, delimiter<group>)

RGXV 483

Required Arguments
regular_expression

specifies a regular expression or a reference to a regular expression in the function
context.

string
specifies a string.

delimiter
specifies a character value that serves as a delimiter when parsing string.

Optional Argument
group

specifies a numeric reference to the regular expression. When specified, the result is
the content of the specified numeric regular expression group.

Example
rgxV('(jerry|scott|vince)',
 'The ESP product has jerry, scott, and vince working on it',
 ' : ')=jerry : scott : vince

ROUND
Returns the rounded numeric value of the argument.

Syntax
round(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
round(34.56)=35
round(34.46)=34

484 Appendix 3 • Functional Window and Notification Window Support Functions

SETCONTAINS
This function has two uses. 1) Parses a specified set of tokens containing the specified delimiter to check
whether a specified string appears within the set. 2) References an existing set of tokens in the function
context to check whether a specified string appears in the set.

Syntax
setContains(set_of_tokens , delimiter, string)

setContains(#reference string)

Required Arguments
set_of_tokens

specifies a string of tokens.

delimiter
specifies a character value used as a delimiter.

string
specifies a string.

reference
specifies a reference to a function context.

Example
setContains('one,two,three,four',',','two')=1
setContains(#mySet,'five')=0

STARTSWITH
Returns true if the first argument starts with the second. Otherwise, returns false.

Syntax
startsWith(argument1 , argument2)

Required Argument
argument1, argument2

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

STARTSWITH 485

Example
startsWith('www.sas.com','www.')=1
startsWith('www.sas.com','sww.')=0

STRING
Returns the string value of the argument.

Syntax
string(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
string(33.9)=33.9

STRINGLENGTH
Returns the length of the string value of the argument.

Syntax
stringLength(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

486 Appendix 3 • Functional Window and Notification Window Support Functions

• a function.

Example
stringLength('SAS ESP XML')=11

STRIP
Returns the string created after removing leading or trailing white space from the argument.

Syntax
strip(argument)

Required Argument
argument

specifies a string.

Example
strip(' SAS ESP XML ')=SAS ESP XML

SUBSTRING
Returns the string created by taking the substring of the value of the first argument at the specified index.

Syntax
substring(argument , index, <length>)

Required Arguments
argument

specifies a string.

index
specifies a numeric value that defines an index with which to parse the argument.

Optional Argument
length

specifies a numeric value. If specified, the substring is length size, otherwise it
contains all characters to the end of the string.

Example
substring('www.sas.com',4,3)=sas
substring('www.sas.com',4)=sas.com

SUBSTRING 487

SUBSTRINGAFTER
Returns the string that results from taking the value of the first argument after an occurrence of the value of
the second argument.

Syntax
substringAfter(argument1 , argument2, <index>)

Required Argument
argument1, argument2

specifies a string.

Optional Argument
index

specifies a numeric value that defines an index with which to parse argument1.
When specified, the content after that occurrence is returned.

Example
substringAfter('www.sas.com','.')=sas.com
substringAfter('www.sas.com','.',2)=com

SUBSTRINGBEFORE
Returns the string that results from taking the value of the first argument before an occurrence of the value
of the second argument.

Syntax
substringBefore(argument1 , argument2, <index>)

Required Argument
argument1, argument2

specifies a string.

Optional Argument
index

specifies a numeric value that defines an index with which to parse argument1.
When specified, the content after that occurrence is returned.

Example
substringBefore('www.sas.com','.')=www
substringBefore('www.sas.com','.',2)=www.sas

488 Appendix 3 • Functional Window and Notification Window Support Functions

SUM
Returns the sum of the numeric values of all arguments.

Syntax
sum(argument , argument2…<argumentN>)

Required Argument
argument, argument2, … argumentN

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
sum(33,22,55.4,34,min(0,4,-9))=135.4

SWITCH
Parses arguments beginning with the second one. When an argument matches the first, it returns the
following argument. If no match is found, it returns null.

Syntax
switch(argument , argument2, …<argumentN>, <argumentN+1>)

Required Argument
argument, argument2…argumentN+1

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

SWITCH 489

Example
switch('bob','jerry','manager','bob','developer')=developer
switch('jerry','jerry','manager','bob','developer')=manager
switch('moe','jerry','manager','bob','developer')=

SYSTEMMICRO
Returns the number of microseconds since Jan 1, 1970.

Syntax
systemMicro()

Example
systemMicro()=1420557039483912

SYSTEMMILLI
Returns the number of milliseconds since Jan 1, 1970.

Syntax
systemMilli()

Example
systemMilli()=1420557039483

TIMECURRENT
Returns the current time.

Syntax
timeCurrent()

Example
timeCurrent()=1421157236
timeString(timeCurrent())=Tue Jan 13 08:53:56 2015

TIMEDAYOFMONTH
Returns the day of the month of the current or specified time.

490 Appendix 3 • Functional Window and Notification Window Support Functions

Syntax
timeDayOfMonth(<argument>)

Optional Argument
argument

specifies an expression that defines a specific time, or a function that returns a
specific time.

Example
timeDayOfMonth()=13
timeDayOfMonth(timeParse('06/21/2015 00:00:00','%m/%d/%Y %H:%M:%S'))=21

TIMEDAYOFWEEK
Returns the day of the week of the current or specified time.

Syntax
timeDayOfWeek(<argument>)

Optional Argument
argument

specifies an expression that defines a specific time, or a function that returns a
specific time.

Example
timeDayOfWeek()=2
timeDayOfWeek(timeParse('06/21/2015 00:00:00','%m/%d/%Y %H:%M:%S'))=0

TIMEDAYOFYEAR
Returns the day of the year of the current or specified time.

Syntax
timeDayOfYear(<argument>)

Optional Argument
argument

specifies an expression that defines a specific time, or a function that returns a
specific time.

TIMEDAYOFYEAR 491

Example
timeDayOfYear()=12
timeDayOfYear(timeParse('06/21/2015 00:00:00','%m/%d/%Y %H:%M:%S'))=171

TIMEGMTTOLOCAL
Converts the GMT that is specified in the argument to local time.

Syntax
timeGmtToLocal(argument)

Required Argument
argument

specifies a time value or a function that returns a time value.

Example
timeString(timeGmtToLocal(timeCurrent()))=Tue Jan 13 02:10:08 2015

TIMEGMTSTRING
Outputs the GMT time represented by the first argument.

Syntax
timeGmtString(argument, <argument2>)

Required Argument
argument

specifies a time value or a function that returns a time value.

Optional Argument
argument2

specifies a time format.

Example
timeString(timeCurrent(),'%Y-%m-%d %H:%M:%S %Z')=2015-02-20 07:57:18 EST
timeGmtString(timeCurrent(),'%Y-%m-%d %H:%M:%S %Z')=2015-02-20 12:57:18 GMT

TIMEHOUR
Returns the hour of the day of the current or specified time.

492 Appendix 3 • Functional Window and Notification Window Support Functions

Syntax
timeHour(<argument>)

Optional Argument
argument

specifies an expression that defines a specific time, or a function that returns a
specific time.

Example
timeHour()=9
timeHour(timeParse('06/21/2015 13:45:15','%m/%d/%Y %H:%M:%S'))=14

TIMEMINUTE
Returns the minute of the hour of the current or specified time.

Syntax
timeMinute(<argument>)

Optional Argument
argument

specifies an expression that defines a specific time, or a function that returns a
specific time.

Example
timeMinute()=22
timeMinute(timeParse('06/21/2015 13:45:15','%m/%d/%Y %H:%M:%S'))=45

TIMEMINUTEOFDAY
Returns the minute of the day of the current or specified time.

Syntax
timeMinuteOfDay(<argument>)

Optional Argument
argument

specifies an expression that defines a specific time, or a function that returns a
specific time.

TIMEMINUTEOFDAY 493

Example
timeMinuteOfDay()=563
timeMinuteOfDay(timeParse('06/21/2015 13:45:15','%m/%d/%Y %H:%M:%S'))=885

TIMEPARSE
Returns a string that represents the time specified in the first argument.

Syntax
timeParse(time,<format>)

Required Argument
time

specifies a time specification or a function that returns a time specification.

Optional Argument
format

specifies a time format that is supported by the UNIX strftime function.

Example
timeParse(timeString())=1421159135
timeParse('01/01/2015 00:00:00','%m/%d/%Y %H:%M:%S')=1420088400

TIMESECOND
Returns the second of the minute of the current or specified time.

Syntax
timeSecond(<argument>)

Optional Argument
argument

specifies an expression that defines a specific time, or a function that returns a
specific time.

Example
timeSecond()=37
timeSecond(timeParse('06/21/2015 13:45:15','%m/%d/%Y %H:%M:%S'))=15

494 Appendix 3 • Functional Window and Notification Window Support Functions

TIMESTAMP
Returns the current time as a string.

Syntax
timeStamp(<format>)

Optional Argument
format

specifies a time format that is supported by the UNIX strftime function.

Example
timeStamp()=Thu Feb 19 15:09:35 2015
timeStamp('%m-%d-%Y')=02-19-2015

TIMESTRING
Returns the time represented by the first argument.

Syntax
timeString(time,<format>)

Required Argument
time

specifies a time specification or a function that returns a time specification.

Optional Argument
format

specifies a time format. If you do not specify format, the system default time format
is used.

Example
timestring(timeCurrent())=Thu Feb 19 15:09:35 2015
timeString(timeCurrent(),'%m-%d-%Y')=02-19-2015

TIMESECONDOFDAY
Returns the second of the day of the current or specified time.

TIMESECONDOFDAY 495

Syntax
timeSecondofDay(<argument>)

Optional Argument
argument

specifies an expression that defines a specific time, or a function that returns a
specific time.

Example
timeSecondOfDay()=34035
timeSecondOfDay(timeParse('06/21/2015 13:45:15','%m/%d/%Y %H:%M:%S'))=53115

TIMETODAY
Returns a value that represents the first second of the current day relative to local time.

Syntax
timeToday()

Example
timeToday()=1421125200

TIMEYEAR
Returns the number of years since 1900 of the current or specified time.

Syntax
timeYear(<argument>)

Optional Argument
argument

specifies an expression that defines a specific time, or a function that returns a
specific time.

Example
timeYear()=115
timeYear(timeParse('06/21/2013 13:45:15','%m/%d/%Y %H:%M:%S'))=113

496 Appendix 3 • Functional Window and Notification Window Support Functions

TOLOWER
Converts the value of the argument to lowercase.

Syntax
toLower(string)

Required Argument
string

specifies a string.

Example
toLower('Http://Www.Sas.Com/Products/Esp')=http://www.sas.com/products/esp

TOUPPER
Converts the value of the argument to uppercase.

Syntax
toUpper(string)

Required Argument
string

specifies a string.

Example
toUpper('Http://Www.Sas.Com/Products/Esp')=HTTP://WWW.SAS.COM/PRODUCTS/ESP

TRANSLATE
For each character in the second argument, finds the corresponding characters in the first argument and
replaces them with the corresponding characters in the third.

Syntax
translate(argument1, argument1, argument3)

Required Argument
argument1, argument2, argument3

specifies a string. The length of argument2 and argument3 must be identical.

TRANSLATE 497

Example

translate('replace all vowels with its capital equivalent','aeiou','AEIOU')
 =rEplAcE All vOwEls wIth Its cApItAl EqUIvAlEnt

TRUE
Returns true if the Boolean value of the argument is true. Otherwise, it returns false.

Syntax
true(argument)

Required Argument
argument

specifies one of the following:

• a literal value, either string or numeric. Enclose string values in single or double
quotation marks.

• a value to be resolved from an event field. Precede field names with the $
character.

• a value that refers to a resource. For example, when you use the xpath function
to refer to an XML object named myXML, you would specify this: #myXML.

• a function.

Example
true('testing')=1
true('')=0
true(gt(10,5))=1

URLDECODE
Decodes the URL represented by the argument.

Syntax
urlDecode(argument)

Required Argument
argument

specifies a string.

Details
For more information to encoding and decoding URLs, see this reference.

498 Appendix 3 • Functional Window and Notification Window Support Functions

http://www.w3schools.com/tags/ref_urlencode.asp

Example
urlDecode('http%3A%2F%2Fwww%2Esas%2Ecom%2Fproducts%2Fevent%20stream%20processing')
=http://www.sas.com/products/event stream processing

URLENCODE
Encodes the URL represented by the argument.

Syntax
urlEncode(argument)

Required Argument
argument

specifies a string.

Details
For more information to encoding and decoding URLs, see this reference.

Example
urlEncode('http://www.sas.com/products/event stream processing')
=http%3a%2f%2fwww%2esas%2ecom%2fproducts%2fevent%20stream%20processing

XPATH
Parses the XML in the first argument, evaluating the second argument in the XML context.

Syntax
xpath(argument1, argument2, <argument3>)

Required Arguments
argument1

specifies an instance of XML, represented by valid XML textual context or by a
reference to XML elsewhere.

argument2
specifies an evaluation string.

Optional Argument
argument3

specifies a separator used when the function returns multiple results.

XPATH 499

http://www.w3schools.com/tags/ref_urlencode.asp

Example
xpath('<info><name>john smith</name><hobby>running</hobby>
 <hobby>reading</hobby><hobby>golf</hobby></info>',
 './/name/text()')=john smith
xpath(#myXml,'.//hobby/text()',',')=running,reading,golf

500 Appendix 3 • Functional Window and Notification Window Support Functions

Appendix 4

Example: Using a Reserved
Word to Obtain an Opcode to
Filter Events

The following code demonstrates the use of ESP_OPCODE to filter events. It uses a
simple callback function that can be registered for a window's new event updates. The
function receives the schema of the events passed to it and a set of one or more events
bundled into a dfESPeventblock object.

For more information, see “Using Event Metadata in Expressions” on page 22.

// -*- Mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*-

#define MAXROW 1024

// Include class definitions for source windows, filter windows,
// continous queries, and projects.
//
#include "dfESPwindow_source.h"
#include "dfESPwindow_filter.h"
#include "dfESPcontquery.h"
#include "dfESPproject.h"
#include "dfESPengine.h"

using namespace std;

void winSubscribeFunction(dfESPschema *os, dfESPeventblockPtr ob, void *ctx) {
 int count = ob->getSize(); // get the size of the Event Block
 if (count>0) {
 char buff[MAXROW+1];
 for (int i=0; i<count; i++) {
 ob->getData(i)->toStringCSV(os, (char *)buff, MAXROW);
 // get the event as CSV
 dfESPengine::oStream() << buff << endl; // print it
 if (ob->getData(i)->getOpcode() == dfESPeventcodes::eo_UPDATEBLOCK)
 ++i; // skip the old record in the update block
 } //for
 } //if
}

// Test a filter window using ESP_OPCODE to filter out all but Inserts.
int main(int argc, char *argv[]) {

 // Call Initialize without overriding the framework defaults
 // which for all paths & filenames will be relative to dirName,
 // and for logging will be stdout.
 bool eventFailure;
 dfESPengine *myEngine =

501

 dfESPengine::initialize(argc, argv, "myEngine", pubsub_DISABLE);
 if (!myEngine) {
 cerr <<"Error: dfESPengine::initialize failed using all framework defaults\n";
 return 1;
 }

 dfESPproject *project_01;
 project_01 = myEngine->newProject("project_01");

 dfESPcontquery *cq_01;
 cq_01 = project_01->newContquery("contquery_01");

 // Build the source window schema, source window, filter windows,
 // and continous query objects.
 dfESPwindow_source *sw;
 sw = cq_01->newWindow_source("sourceWindow_01", dfESPindextypes::pi_RBTREE,
 dfESPstring("ID*:int64,symbol:string,price:money,quant:
 int32,vwap:double,trade_date:date,tstamp:stamp"));
 dfESPschema *schema_01 = sw->getSchema();

 dfESPwindow_filter *fw;
 fw = cq_01->newWindow_filter("filterWindow",
 dfESPindextypes::pi_RBTREE);
 fw->setFilter("ESP_OPCODE==\"I\"");

 // Add the subscriber callback to the source window, and the
 // source window to the continous query.
 fw->addSubscriberCallback(winSubscribeFunction);

 cq_01->addEdge(sw, 0, fw);

 project_01->setNumThreads(2);

 myEngine->startProjects();

 // declare some variables to build up the input data.
 //
 //
 dfESPptrVect<dfESPeventPtr> trans;
 dfESPevent *p;

 // Build a block of input data.
 //
 p = new dfESPevent(schema_01,(char *)
 "i,n,44001,ibm,101.45,5000,100.565,2010-09-07
 16:09:01,2010-09-07 16:09:01.123", eventFailure);
 trans.push_back(p);
 p = new dfESPevent(schema_01,(char *)
 "i,n,50000,sunw,23.52,100,26.3956,2010-09-08
 16:09:01,2010-09-08 16:09:01.123", eventFailure);
 trans.push_back(p);
 p = new dfESPevent(schema_01,(char *)
 "i,n,66666,orcl,120.54,2000,101.342,2010-09-09
 16:09:01,2010-09-09 16:09:01.123", eventFailure);

502 Appendix 4 • Example: Using a Reserved Word to Obtain an Opcode to Filter Events

 trans.push_back(p);

 dfESPeventblockPtr ib =
 dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
 trans.free();

 // Put the event block into the graph, then loop over the graph until
 // there is no more work to do.
 //
 project_01->injectData(cq_01, sw, ib);
 project_01->quiesce(); // quiesce the graph of events

 // Build another block of input data.
 p = new dfESPevent(schema_01,(char *)
 "u,n,44001,ibm,100.23,3000,100.544,2010-09-09
 16:09:01,2010-09-09 16:09:01.123", eventFailure);
 trans.push_back(p);
 p = new dfESPevent(schema_01,(char *)
 "u,n,50000,sunw,125.70,3333,122.3512,2010-09-07
 16:09:01,2010-09-07 16:09:01.123", eventFailure);
 trans.push_back(p);
 p = new dfESPevent(schema_01,(char *)
 "u,n,66666,orcl,99.11,954, 97.4612,2010-09-10
 16:09:01,2010-09-10 16:09:01.123", eventFailure);
 trans.push_back(p);

 ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
 trans.free();
 project_01->injectData(cq_01, sw, ib);
 project_01->quiesce(); // quiesce the graph of events

 // Build another block of input data.
 p = new dfESPevent(schema_01,(char *)
 "d,n,66666,orcl,99.11,954, 97.4612,2010-09-10
 16:09:01,2010-09-10 16:09:01.123", eventFailure);
 trans.push_back(p);

 ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
 trans.free();
 project_01->injectData(cq_01, sw, ib);
 project_01->quiesce(); // quiesce the graph of events

 // cleanup
 dfESPengine::shutdown();
 return 0;
}

Using ESP_OPCODE to Filter Events 503

504 Appendix 4 • Example: Using a Reserved Word to Obtain an Opcode to Filter Events

Appendix 5

Example: Using DataFlux
Expression Language Global
Functions

The following code creates a compute window that uses a UDF in a compute expression
for a string field. The function is initialized using the window-expression init feature.

// -*- Mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*-

#include "dfESPengine.h" // this also includes deESPlogUtils.h
#include "dfESPstring.h"
#include "dfESPevent.h"
#include "dfESPwindow_source.h"
#include "dfESPwindow_compute.h"
#include "dfESPcontquery.h"
#include "dfESPeventblock.h"
#include "dfESPproject.h"

#include <iostream>
#include <stdlib.h>
#include <stdio.h>

#include <cstdio>
#include <iostream>

using namespace std;

void winSubscribe_compute(dfESPschema *os, dfESPeventblockPtr ob, void *ctx) {
 dfESPengine::oStream()
 << endl << "--" << endl;
 dfESPengine::oStream() << "computeWindow" << endl;
 ob->dump(os);
}

int main(int argc, char *argv[]) {

 bool eventFailure;
 // Call Initialize without overriding the framework defaults.
 dfESPengine *myEngine = dfESPengine::initialize(argc, argv, "myEngine",
 pubsub_DISABLE);
 if (!myEngine) {
 cerr <<"Error: dfESPengine::initialize failed using all framework defaults\n";
 return 1;
 }

 dfESPproject *project;
 project = myEngine->newProject("project");

505

 dfESPcontquery *contQuery;
 contQuery = project->newContquery("contquery");

 dfESPwindow_source *sw;
 sw = contQuery->newWindow_source("sourceWindow", dfESPindextypes::pi_HASH,
 dfESPstring("name:string,ID*:int32,city:string"));
 dfESPschema *sw_schema = sw->getSchema();

 dfESPwindow_compute *cw;
 cw = contQuery->newWindow_compute("computeWindow", dfESPindextypes::pi_HASH,
 dfESPstring("ID*:int32,name:string,city:string,udfVal1:int32,udfVal2:int32"));

 // Register a UDF expression for this window to be used in field calc expressions.
 cw->regWindowExpUDF("return ((ID+3)*2)",
 "example_udf1", dfESPdatavar::ESP_INT32);
 cw->regWindowExpUDF("return ((ID+5)*3)",
 "example_udf2", dfESPdatavar::ESP_INT32);
 // Register the non-key field calculation expressions.
 // They must be added in the same non-key field order as the schema.
 cw->addNonKeyFieldCalc("name"); // pass name through unchanged
 cw->addNonKeyFieldCalc("city"); // pass city through unchanged
 cw->addNonKeyFieldCalc("example_udf1()"); // call UDF to fill this field
 cw->addNonKeyFieldCalc("example_udf2()"); // call UDF to fill this field

 // Add the subscriber callbacks to all the windows
 cw->addSubscriberCallback(winSubscribe_compute);

 // Add window connectivity
 contQuery->addEdge(sw, 0, cw);

 // create and start the project
 project->setNumThreads(2);

 myEngine->startProjects();

 // declare some variables to build up the input data.
 dfESPptrVect<dfESPeventPtr> trans;
 dfESPevent *p;

 // Insert multiple events
 p = new dfESPevent(sw_schema,(char *)"i,n,Jerry, 1111, Apex", eventFailure);
 trans.push_back(p);
 p = new dfESPevent(sw_schema,(char *)"i,n,Scott, 1112, Cary", eventFailure);
 trans.push_back(p);
 p = new dfESPevent(sw_schema,(char *)"i,n,someone, 1113, Raleigh", eventFailure);
 trans.push_back(p);
 dfESPeventblockPtr ib =
 dfESPeventblock::newEventBlock(&trans,dfESPeventblock::ebt_TRANS);
 project->injectData(contQuery, sw, ib);
 // Inject the event block into the graph
 trans.free();
 project->quiesce();

 dfESPengine::shutdown();
 return 0;

506 Appendix 5 • Example: Using DataFlux Expression Language Global Functions

}

The following code creates a source window that uses a splitter expression UDF to
determine where it should send subsequent events. Recipients are one of two connected
copy windows. One copy window gets events with even-numbered IDs. The other gets
events with odd-numbered IDs.

// -*- Mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*-

// Include class definitions for modeling objects.
//
#include "dfESPstring.h"
#include "dfESPevent.h"
#include "dfESPwindow_source.h"
#include "dfESPwindow_copy.h"
#include "dfESPcontquery.h"
#include "dfESPeventblock.h"
#include "dfESPengine.h"
#include "dfESPproject.h"

// Standard includes
#include <iostream>
#include <stdlib.h>
#include <cstdio>
#include <iostream>

using namespace std;

struct callback_ctx {
 dfESPthreadUtils::mutex *lock;
 dfESPstring windowName;
};

// This call back function is registered to the source and copy windows.
// It uses the context pointer to get the appropriate calling window name and
// to lock on output for thread safetyness.
//
void winSubscribe(dfESPschema *os, dfESPeventblockPtr ob, void *cx) {
 callback_ctx *ctx = (callback_ctx *)cx;

 ctx->lock->lock();
 dfESPengine::oStream()
 << endl << "---" << endl;
 dfESPengine::oStream() << ctx->windowName << endl;
 ob->dump(os);
 ctx->lock->unlock();
}

int main(int argc, char *argv[]) {

 //
 // ---------- BEGIN MODEL (CONTINUOUS QUERY DEFINITIONS) -------------------
 //

 // Create the single engine top level container which sets up dfESP fundamental
 // services such as licensing, logging, pub/sub, and threading, ...

Example: Using UDFs 507

 // Engines typically contain 1 or more project containers.
 // @param argc the parameter count as passed into main.
 // @param argv the paramter vector as passed into main. currently the dfESP library
 // only looks for -t <textfile.name> to write it's output,
 // -b <badevent.name> to write any bad events (events that failed
 // to be applied to a window index).
 // -r <restore.path> path used to restore a previously persisted
 // engine state.
 // @param id the user supplied name of the engine.
 // @param pubsub pub/sub enabled/disabled and port pair,
// formed by calling static function
 // dfESPengine::pubsubServer()
 // @param logLevel the lower threshold for displayed log messages
 // - default: dfESPLLInfo,
 // @see dfESPLoggingLevel
 // @param logConfigFile a log4SAS configuration file
 // - default: configure logging to go to standard out.
 // @param licKeyFile a FQPN to a license file
 // - default: $DFESP_HOME/etc/license/esp.lic
 // @return the dfESPengine instance.
 //
 dfESPengine *myEngine =
 dfESPengine::initialize(argc, argv, "engine", pubsub_DISABLE);
 if (myEngine == NULL) {
 cerr <<"Error: dfESPengine::initialize() failed using all framework defaults\n";
 return 1;
 }

 // Define the project, this is a container for one or more
 // continuous queries.
 //
 dfESPproject *project_01 = myEngine->newProject("project_01");

 // Define a continuous query object. This is the first level
 // container for windows. It also contains the window to window
 // connectivity information.
 //
 dfESPcontquery *cq_01;
 cq_01 = project_01->newContquery("contquery_01");

 // Build the source window. We specify the window name, the schema
 // for events, the depot used to generate the index and handle
 // event storage, and the type of primary index, in this case a
 // red/black tree
 //
 dfESPwindow_source *sw;
 sw = cq_01->newWindow_source("source", dfESPindextypes::pi_RBTREE,
 dfESPstring("ID*:int32,symbol:string,price:double"));

 // Register the User Defined Expression with window splitter's expression
 // engine. This UDF does a mod 2 on the ID field, so either slot 0 or
 // slot 1 will be selected for each event.
 //
 sw->regSplitterExpUDF("return ID%2", "example_udf", dfESPdatavar::ESP_INT32);

 // Use the setSplitter call to set the splitter expression which uses

508 Appendix 5 • Example: Using DataFlux Expression Language Global Functions

 // the user defined function already registered.
 //
 sw->setSplitter("example_udf()");

 // Create the copy windows.
 dfESPwindow_copy *cw_even;
 cw_even = cq_01->newWindow_copy("copy_even", dfESPindextypes::pi_RBTREE);

 dfESPwindow_copy *cw_odd;
 cw_odd = cq_01->newWindow_copy("copy_odd", dfESPindextypes::pi_RBTREE);

 // Add the subscriber callbacks to the source & copy windows
 // using context data structures for each
 //
 callback_ctx src_ctx, cpy_even_ctx, cpy_odd_ctx;

 src_ctx.lock = cpy_even_ctx.lock = cpy_odd_ctx.lock =
 dfESPthreadUtils::mutex::mutex_create(); // a shared lock
 src_ctx.windowName = "source"; // window name for callback function
 cpy_even_ctx.windowName = "copy_even"; // window name for callback function
 cpy_odd_ctx.windowName = "copy_odd"; // window name for callback function
 sw->addSubscriberCallback(winSubscribe, (void *)&src_ctx);
 cw_even->addSubscriberCallback(winSubscribe, (void *)&cpy_even_ctx);
 cw_odd->addSubscriberCallback(winSubscribe, (void *)&cpy_odd_ctx);

 // Add the connectivity information to the continuous query. This
 // means sw[slot 0] --> cw_even
 // sw[slot 1] --> cw_odd
 //
 cq_01->addEdge(sw, 0, cw_even);
 cq_01->addEdge(sw, 1, cw_odd);

 // Define the project's thread pool size and start it.
 //
 // **Note** after we start the project here, we do not see
 // anything happen, as no data has yet been put into the
 // continuous query.
 //
 project_01->setNumThreads(3);
 myEngine->startProjects();

 //
 // -------- END MODEL (CONTINUOUS QUERY DEFINITION) ---------------
 //

 /* Now build some test data and inject it into the source window. */

 bool eventFailure;
 dfESPptrVect<dfESPeventPtr> trans;
 dfESPevent *p;

 // Build a block of input data.
 //
 p = new dfESPevent(sw->getSchema(),(char *)"i,n,1,ibm,101.45", eventFailure);
 trans.push_back(p);
 p = new dfESPevent(sw->getSchema(),(char *)"i,n,2,sunw,23.5", eventFailure);

Example: Using UDFs 509

 trans.push_back(p);
 p = new dfESPevent(sw->getSchema(),(char *)"i,n,3,orcl,10.1", eventFailure);
 trans.push_back(p);

 dfESPeventblockPtr ib =
 dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
 trans.free();

 // Put the event block into the graph, then loop over the graph until
 // there is no more work to do.
 //
 project_01->injectData(cq_01, sw, ib);

 // Quiesce the project to ensure all events are processed before shuting down.
 project_01->quiesce();

 // Cleanup.
 myEngine->shutdown(); // Shutdown the ESP engine
 return 0;
}

510 Appendix 5 • Example: Using DataFlux Expression Language Global Functions

Appendix 6

Example: Using Blue Fusion
Functions

The following example creates a compute window that uses the Blue Fusion standardize
function. The function normalizes the City field that is created for events in that
window.

This example provides a general demonstration of how to use Blue Fusion functions in
expressions. To use these functions, you must have installed the SAS DataFlux QKB
(Quality Knowledge Base) product and set two environment variables: DFESP_QKB and
DFESP_QKB_LIC. For more information, see “Using Blue Fusion Functions” on page
24.

// -*- Mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*-

#include "dfESPengine.h" // this also includes deESPlogUtils.h
#include "dfESPstring.h"
#include "dfESPevent.h"
#include "dfESPwindow_source.h"
#include "dfESPwindow_compute.h"
#include "dfESPcontquery.h"
#include "dfESPeventblock.h"
#include "dfESPproject.h"

#include <iostream>
#include <stdlib.h>
#include <stdio.h>

#include <cstdio>
#include <iostream>

#define SYMBOL_INDX 1
#define PRICE_INDX 2

// This example creates a compute window that contains a field
// expression that uses a data quality function in the Blue Fusion library.
// In this example we are standardizing the city name.
//
// In order to run this example, you need to download the DataFlux Quality
// Knowledge Base and set the environment variable DFESP_QKB to the root node
// of that install.

using namespace std;

void winSubscribe_compute(dfESPschema *os, dfESPeventblockPtr ob, void *ctx) {
 dfESPengine::oStream() << endl

511

<< "---" << endl;
 dfESPengine::oStream() << "computeWindow" << endl;
 ob->dump(os);
 }

int main(int argc, char *argv[]) {

 bool eventFailure;
 // Call Initialize without overriding the framework defaults.
 dfESPengine *myEngine =
 dfESPengine::initialize(argc, argv, "myEngine", pubsub_DISABLE);
 if (!myEngine) {
 cerr <<"Error: dfESPengine::initialize failed using all framework defaults\n";
 return 1;
 }

 dfESPproject *project;
 project = myEngine->newProject("project");

 dfESPcontquery *contQuery;
 contQuery = project->newContquery("contquery");

 // Build the source window schema, source window, copy window,
 // and continous query objects.

 dfESPwindow_source *sw;
 sw = contQuery->newWindow_source("sourceWindow", dfESPindextypes::pi_HASH,
 dfESPstring("name:string,ID*:int32,city:string"));
 dfESPschema *sw_schema = sw->getSchema();

 dfESPwindow_compute *cw;
 cw = contQuery->newWindow_compute("computeWindow", dfESPindextypes::pi_HASH,
 dfESPstring("ID*:int32,name:string,oldCity:string,newCity:string"));

 // Register the non-key field calculation expressions.
 // They must be added in the same non-key field order as the schema.
 cw->addNonKeyFieldCalc("name"); // pass name through unchanged
 cw->addNonKeyFieldCalc("city"); // pass city through unchanged

 // Now run city through the blue fusion standardize function.
 char newCity[2048] = "bluefusion bf\r\n";
 strcat(newCity, "String result\r\n");
 strcat(newCity, "bf = bluefusion_initialize()\r\n");
 strcat(newCity, "if (isnull(bf)) then\r\n");
 strcat(newCity, " print(bf.getlasterror())\r\n");
 strcat(newCity, "if (bf.loadqkb(\"ENUSA\") == 0) then\r\n");
 strcat(newCity, " print(bf.getlasterror())\r\n");
 strcat(newCity, "if (bf.standardize(\"City\",city,result) == 0) then\r\n");
 strcat(newCity, " print(bf.getlasterror())\r\n");
 strcat(newCity, "return result");
 cw->addNonKeyFieldCalc(newCity);

 // Add the subscriber callbacks to all the windows
 cw->addSubscriberCallback(winSubscribe_compute);

 // Add window connectivity

512 Appendix 6 • Example: Using Blue Fusion Functions

 contQuery->addEdge(sw, 0, cw);

 // create and start the project
 project->setNumThreads(2);

 myEngine->startProjects();

 // declare some variables to build up the input data.
 dfESPptrVect<dfESPeventPtr> trans;
 dfESPevent *p;

 // Insert multiple events
 p = new dfESPevent(sw_schema,(char *)"i,n,Jerry, 1111, apex", eventFailure);
 trans.push_back(p);
 p = new dfESPevent(sw_schema,(char *)"i,n,Scott, 1112, caryy", eventFailure);
 trans.push_back(p);
 p = new dfESPevent(sw_schema,(char *)"i,n,someone, 1113, rallleigh", eventFailure);
 trans.push_back(p);
 dfESPeventblockPtr ib =
 dfESPeventblock::newEventBlock(&trans,dfESPeventblock::ebt_TRANS);
 project->injectData(contQuery, sw, ib); // Inject the event block into the graph
 trans.free();
 project->quiesce();

 dfESPengine::shutdown();
 return 0;
 }

Using the Blue Fusion Standardize Function 513

514 Appendix 6 • Example: Using Blue Fusion Functions

Appendix 7

Setting the Logging Level

You can set logging levels for the engine, adapters, and the XML server. The valid
logging levels are as follows:

Logging Level Description

TRACE Provides detailed information.

DEBUG Provides detailed information about the flow through the system.
(Provides more information than TRACE.)

INFO Provides information about run-time events of interest. (Provides less
information than TRACE.)

WARN Shows warning messages (for example, use of deprecated APIs, poor
use of an API, or other run-time situations that are undesirable).

ERROR Shows all error messages.

FATAL Shows message for fatal errors.

OFF Specifies that logging is turned off.

You can set the logging levels for the engine using the
dfESPengine::initialize() method or through a log configuration file that can
also be specified in this same method. To set the logging level for the C publish/
subscribe API, use the C_dfESPpubsubInit() method. To set the logging level for
the Java publish/subscribe API, use the init()method. Connectors use engine logging.

Logging levels for adapters use the same range of levels.

Table A7.1 Logging Level for the Adapter

Logging Level Parameter Setting Location

TRACE dfESPLLTrace Logs

DEBUG dfESPLLDebug Logs

INFO dfESPLLInfo Immediately visible on the console.

WARN dfESPLLWarn Immediately visible on the console.

515

Logging Level Parameter Setting Location

ERROR dfESPLLError Immediately visible on the console.

FATAL dfESPLLFatal Immediately visible on the console.

OFF dfESPLLOff Not applicable.

The XML server provides logging contexts.

Logging Context Description

esp Represents the basic engine and generates messages about events
that flow through the system, throttling, system errors, and so on.

This context is always available.

common.http Details HTTP requests that come into the server and their
corresponding responses.

common.smtp Details SMTP server interaction in notification windows.

esp.http Details event-stream-processing specific HTTP requests.

esp.pubsub Details event-stream-processing publish/subscribe activity.

esp.server Provides information about general XML server issues.

esp.windows Provides information about window issues.

pubsub.http Details requests and responses from the publish/subscribe HTTP
server.

window.notificat
ion

Shows messages specific to notification windows.

To set the start-up log level for the XML server, use the loglevel parameter on the
command line.

For example, enter dfesp_xml_server -loglevel
"esp=error,common.http=debug,esp.windows=trace". This sets the log
level for each specified context before the server starts to perform its basic functions.

When you start the XML server through an HTTP administrative interface, you can set
the log level for active logging contexts and query current log levels. Do this with the /
loggers request.

To query the current log levels, the request is as follows: http://server:port/
loggers.

You can also use the XML client: dfesp_xml_client —url “http://
localhost:46001/SASESP/loggers”.

The response to this request is as follows:

<loggers>

516 Appendix 7 • Setting the Logging Level

 <logger name='esp' level='TRACE'/>
 <logger name='common.http' level='INFO'/>
 <logger name='common.smtp' level='OFF'/>
 <logger name='esp.http' level='INFO'/>
 <logger name='esp.pubsub' level='TRACE'/>
 <logger name='esp.server' level='TRACE'/>
 <logger name='esp.windows' level='OFF'/>
 <logger name='function.context' level='INFO'/>
 <logger name='pubsub.http' level='INFO'/>
 <logger name='window.functional' level='INFO'/>
 <logger name='window.notification' level='OFF'/>
</loggers>

When you are interested only in certain contexts, use the following GET HTTP
command: http://server:port/SASESP/loggers.

Using the client, the response to dfesp_xml_client -url "http://
localhost:46001/SASESP/loggers/pubsub.http" is as follows:

<logger name="pubsub.http" level="INFO"/>

To set the log level for a particular context, use the /loglevel request through a PUT
HTTP command with the following path: http://server:port/SASESP/
loggers/loggerId/level?value=loglevel.

Using the client, the response to dfesp_xml_client -url "http://
localhost:41001/SASESP/loggers/esp/level?value=trace" -put is as
follows:

<response>
 <message>logger 'esp' set to 'trace'</message>
</response>

Setting Logging Levels 517

518 Appendix 7 • Setting the Logging Level

Recommended Reading

SAS Event Stream Processing is supported by the following documents:

• SAS Event Steam Processing: Overview provides an introduction to the product and
an illustrative example.

• SAS Event Stream Processing: User’s Guide describes the product and provides
technical details for writing event stream processing applications.

• Open $DFESP_HOME/doc/html/index.html in a web browser to access
detailed class and method documentation for the C++ modeling, C, and Java™ client
publish/subscribe APIs. The documentation is organized by modules, namespaces,
and classes.

Specifically, documentation about the following topics is provided:

• C++ Modeling API

• SAS Event Stream Processing API

• SAS Event Stream Processing Connector API

• Publish/Subscribe API

• SAS Event Stream Processing Publish/Subscribe C API

• SAS Event Stream Processing Publish/Subscribe Java API

• View $DFESP_HOME/etc/xml/schema/model.rnc for a full syntactic
description of valid SAS Event Stream Processing XML language elements.

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

519

http://sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

520 Recommended Reading

Glossary

derived windows
windows that display events that have been fed through other windows and that
perform computations or transformations on these incoming events.

directed graph
a set of nodes connected by edges, where the edges have a direction associated with
them.

engine
the top-level container in a model that manages the project resources.

event block
a grouping or package of events with a unique ID for use in a continuous query.

event stream
a continuous flow of event blocks.

event stream processing
a process that enables real-time decision making by continuously analyzing large
volumes of data as it is received.

factory server
a server for factory objects that control the creation of other objects, access to other
objects, or both.

memory depot
a repository for indexes and event data that is used by a project.

modeling API
an application programming interface that enables developers to write event stream
processing models.

operation code (opcode)
an instruction that specifies an action to be performed.

publish/subscribe API
a library that enables you to publish event streams into an event stream processor, or
to subscribe to event streams, within the event stream processing model. The
publish/subscribe API also includes a C and JAVA event stream processing object
support library.

521

source window
a window that has no windows feeding into it and is the entry point for publishing
events into the continuous query.

stream
a sequence of data elements [that are] made available over time.

thread pool
a set of threads that can be used to execute tasks, post work items, process
asynchronous I/O, wait on behalf of other threads, and process timers.

window
a processing node in an event stream processing model. Source and derived windows
can perform aggregations, computations, pattern matching, and other operations.

522 Glossary

Index

A
adapters 12, 264

database 349
definition of 347
event stream processor 351
file and socket 352
HDAT reader 357
HDFS 358
IBM WebSphere MQ 355
Java Message Service 361
location of 348
PI 367
Rabbit MQ 369
REST 371
SAS data set 373
SAS LASR Analytic Server 365
similarity to connectors 348
SMTP subscriber 376
sniffer 377
Solace Systems 379
Teradata 381
Tervela 383
Tibco RV 385
Twitter 387

aggregate functions 166
additive 172
for adding statistics to an incoming

event 169
for aggregate window field calculation

expressions 167
non-additive 171
writing and using 170

aggregate windows 19, 58, 150, 166
flow of operations 166
overview 165
XML code examples of 176

B
Blue Fusion functions 24

C
compute windows 18, 59, 151

XML code example 100
connectors 12, 264

database 300
file and socket 308
IBM Websphere MQ 314
location of examples 296
orchestrating 298
overview 296
PI 316
project publish 320
Rabbit MQ 320
SMTP subscriber 326
sniffer 327
Solace Systems 330
Teradata 334
Tervela 336
Tibco RV 341
XML language elements for 90

continuous queries 12, 18, 148
XML language element for 55

copy windows 18, 61, 150
XML code example of 100

counter windows 19, 60, 154
C++ code examples of 181
overview of 179
XML code examples of 180

D
database adapters 349
database connectors 300
derived windows 12, 18

E
edges 12, 18, 51

XML element for 57
empty index joins 195
engines 12

XML language element for 52
event blocks 15
event loops 183
event stream processor adapters 351
events 13, 144

523

XML language element for 87

F
file and socket adapters 352
file and socket connectors 308
filter windows 19, 62, 155
function context 183, 184

XML code example of 204
functional windows 19, 63, 156

C++ code example of 190
overview to 183
using event loops 183
XML code examples of 189

H
HDAT reader adapters 357
HDFS adapters 358

I
IBM WebSphere MQ adapters 355
IBM WebSphere MQ connectors 314

J
Java Message Service adapters 361
join windows 19, 64, 157, 169

C++ code examples of 196
overview to 191
using streaming joins 192
XML code example 101

M
models 17, 42, 51

creating a compute model 111
creating a copy with slots model 115
creating a filter model 121
creating a join model 125
creating a pattern model 130
creating an aggregation model 105
definition of 12
depiction in SAS Event Stream

Processing Studio 103

N
notification windows 19, 74, 158

delivery channels 201
overview to 199

O
opcodes 13, 26, 396

delete 13
insert 13
safe delete 13
update 13
upsert 13

P
pattern windows 19, 65, 159

C++ code example of 223
overview to 215
XML code example of 227

PI adapters 367
PI connectors 316
procedural window handlers 232
procedural windows 19, 67, 159

overview to 231
project publish connectors 320
projects 12, 14, 16, 147

XML language element for 54
publish/subscribe API 12, 263

R
Rabbit MQ adapters 369
Rabbit MQ connectors 320
REST adapters 371

S
SAS data set adapters 373
SAS Event Stream Process Studio

overview 103
SAS LASR Analytic Server adapters 365
schemas 13, 20, 27, 94, 131, 143, 165,

183
definition file 50
XML language elements for 97

SMTP connectors 326
SMTP subscriber adapters 376
sniffer adapters 377
sniffer connectors 327
Solace Systems adapters 379
Solace Systems connectors 330
source windows 12, 14, 18, 69, 131, 149,

374
XML code example 99

streaming joins 192
Streamviewer 51

running 395
using 395

T
Teradata adapters 381
Teradata connectors 334

524 Index

Tervela adapters 383
Tervela connectors 336
text category windows 19, 70, 160
text context windows 20, 71, 160
text sentiment windows 20, 72, 163
thread pools 12
Tibco RV adapters 385
Tibco RV connectors 341
Twitter adapters 387

U
union windows 20, 73, 163

W
windows

aggregate 19, 58, 150, 165, 166
compute 18, 59, 100, 151
copy 18, 61, 100, 150
counter 19, 60, 154, 179, 180, 181
filter 19, 62, 155

functional 19, 63, 156, 183, 190
join 19, 64, 101, 157, 169, 191
notification 19, 74, 158, 199
patern 215
pattern 19, 65, 159
procedural 19, 67, 159, 231
source 12, 14, 18, 69, 99, 131, 149, 374
text category 19, 70, 160
text context 20, 71, 160
text sentiment 20, 72, 163
union 20, 73, 163

X
XML client

command arguments 41
XML server 51, 54

command arguments 26
definition 26
sending HTTP requests to 27
starting 26
using 26

Index 525

526 Index

	Contents
	About This Book
	Audience

	What’s New in SAS Event Stream Processing
	Overview
	New Way to Write Input Handlers
	New Compression for Pattern Windows
	New Functionality for User-defined Callback Functions
	Redesigned HTTP API
	Optional Authentication Now Available
	New Persist and Recover Support to Window Types
	New Integration with Hadoop YARN
	New Support for Dynamic Event Stream Processing Models
	New Learning Models Provided through K-means Clustering
	Enhancements to SAS Event Stream Processing Studio
	New Connectors and Adapters
	Changes to Connectors and Adapters
	Change to the Default Opcode
	Additional Levels of Support
	New Parameters

	Overview to SAS Event Stream Processing
	Product Overview
	Getting Started with SAS Event Stream Processing
	Installing and Configuring SAS Event Stream Processing
	Updating SAS Event Stream Processing Release 3.1 to Release
3.2
	Uninstalling SAS Event Stream Processing
	Using SAS Event Stream Processing
	Open SAS Event Stream Processing Studio
	Viewing Logs

	Writing an Application with SAS Event Stream Processing

	Understanding Event Stream Processing Modeling Objects
	Designing an Event Stream Processing Application
	What is an Event Stream Processing Model?
	Understanding Events
	Understanding Event Blocks
	Implementing Engines
	Understanding Projects
	Understanding Continuous Queries
	Understanding Windows

	Using Expressions
	Overview to Expressions
	Understanding Data Type Mappings
	Using Event Metadata in Expressions
	Using DataFlux Expression Language Global Functions
	Using Blue Fusion Functions

	Using the XML Layer
	Using the XML Server
	Starting the Server
	Using the Server

	Sending HTTP Requests to the XML Server
	Overview
	Event Stream Processing Projects
	Running Event Stream Processing Projects
	Stopped Event Stream Processing Projects
	Event Stream Processing Windows
	Event Stream Processing Events
	Pattern Events
	Event Stream Processing Server
	Logging
	Connectors
	Project Results
	Project Validation Results
	Mapping Release 3.1 HTTP Requests to Release 3.2 HTTP Requests

	Using the XML Client
	Overview to the XML Client
	Get the Current Model
	Get Event Counts
	Retrieve Events from a Window
	Reload the Model
	Persist the Model
	Start a Project
	Stop a Project
	Load a Project
	Delete a Project
	Inject Events into a Source Window
	Run a Project and Get Results
	Validate a Model

	Validating Your XML Code
	XML Language Elements
	Overview to XML Language Elements
	XML Language Elements for the Basic Structure of a Model
	XML Language Elements That Define Window Types
	XML Language Elements Relevant to Notification Windows
	XML Language Elements Relevant to Join Windows
	XML Language Elements for Events
	XML Language Elements for Connectors
	XML Language Elements for Functions
	XML Language Elements Relevant to the HTTP Interface

	XML Code Examples
	Window-Source Example
	Window-Copy Example
	Window-Compute Examples
	Window-Join Examples

	Using SAS Event Stream Processing Studio
	Overview to SAS Event Stream Processing Studio
	Using SAS Event Stream Processing
Studio
	Example: Creating an Aggregation Model
	Example: Creating a Compute Model
	Example: Creating a Copy with Slots Model
	Example: Creating a Filter Model
	Example: Creating a Join Model
	Example: Creating a Pattern Model

	Programming with the C++ Modeling API
	Overview to the C++ Modeling API
	Dictionary
	dfESPengine
	dfESPdatavar
	dfESPschema
	dfESPevent
	dfESPeventblock
	dfESPproject
	dfESPcontquery
	dfESPwindow_source
	dfESPwindow_aggregate
	dfESPwindow_copy
	dfESPwindow_compute
	dfESPwindow_counter
	dfESPwindow_filter
	dfESPwindow_functional
	dfESPwindow_join
	dfESPwindow_notification
	dfESPwindow_pattern
	dfESPwindow_procedural
	dfESPwindow_textCategory
	dfESPwindow_textContext
	dfESPwindow_textSentiment
	dfESPwindow_union

	Creating Aggregate Windows
	Overview to Aggregate Windows
	Flow of Operations
	Using Aggregate Functions
	Overview to Using Aggregate Functions
	Aggregate Functions for Aggregate Window Field Calculation
Expressions
	Using an Aggregate Function to Add Statistics to an Incoming
Event
	Writing and Using an Aggregate Function
	Writing Non-Additive Aggregate Functions
	Writing Additive Aggregate Functions

	XML Examples of Aggregate Windows

	Creating Counter Windows
	Overview to Counter Windows
	Examples
	XML Code Examples
	C++ Code Examples

	Creating Functional Windows
	Overview to Functional Windows
	Using Event Loops
	Understanding and Using Function Context
	Overview to Function Context
	Types of Functions You Can Use
	Using Expressions
	Specifying Properties
	Function-Context Example

	Functional Window Examples
	Stock Trades
	C++ Code Example

	Creating Join Windows
	Overview to Join Windows
	Understanding Streaming Joins
	Overview to Streaming Joins
	Using Secondary Indices
	Using Regeneration versus No Regeneration

	Creating Empty Index Joins
	Examples of Join Windows

	Creating Notification Windows
	Overview to Notification Windows
	Notification Window Delivery Channels
	Overview to Notification Window Delivery Channels
	Using the Email Delivery Channel
	Using the SMS Delivery Channel
	Using the MMS Delivery Channel

	Using the Function-Context Element
	Examples of Notification Windows
	Building a Streaming Performance Monitor
	Catching Front Running Traders
	Example Written in C++

	Creating Pattern Windows
	Overview of Pattern Windows
	State Definitions for Operator Trees
	Restrictions on Patterns
	Using Stateless Pattern Windows
	Enabling Pattern Compression
	Enabling the Heartbeat Interval
	Pattern Window Examples
	C++ Pattern Window Example
	XML Pattern Window Examples

	Creating Procedural Windows
	Overview to Procedural Windows
	Using C++ Window Handlers
	Using DS2 Window Handlers
	Overview of DS2 Window Handlers
	General Structure of a DS2 Input Handler
	Examples
	Event Stream Processor to DS2 Data Type Mappings and Conversions

	DATA Step Window Handlers
	Overview
	Configuration
	Referencing SAS Event Stream Processing in a DATA Step
	Supported Data Types
	Known Limitations

	XML Examples of Procedural Windows

	Advanced Window Operations
	Implementing Periodic (or Pulsed) Window Output
	Splitting Generated Events across Output Slots
	Overview
	Splitter Functions
	Splitter Expressions

	Marking Events as Partial-Update on Publish
	Overview
	Publishing Partial Events into a Source Window
	Examples

	Understanding Retention
	Understanding Primary and Specialized Indexes
	Overview
	Fully Stateful Indexes
	Using the pi_HLEVELDB Primary Index with Big Dimension Tables
	Non-Stateful Index

	Persist and Restore Operations
	Gathering and Saving Latency Measurements
	Enabling Finalized Callback

	Using the Publish/Subscribe API
	Overview to the Publish/Subscribe API
	Understanding Publish/Subscribe API Versioning
	Using the C Publish/Subscribe API
	The C Publish/Subscribe API from the Engine’s Perspective
	The C Publish/Subscribe API from the Client’s Perspective
	Functions for the C Publish/Subscribe API

	Using the Java Publish/Subscribe API
	Overview to the Java Publish/Subscribe API
	Using High-Level Publish/Subscribe Methods
	Using Methods That Support Google Protocol Buffers
	Using User-supplied Callback Functions
	Using Alternative Transport Libraries for Java Clients

	Publish/Subscribe API Support for Google Protocol Buffers
	Overview to Publish/Subscribe API Support for Google Protocol
Buffers
	Converting Nested and Repeated Fields in Protocol Buffer Messages
to an Event Block
	Converting Event Blocks to Protocol Buffer Messages
	Support for Transporting Google Protocol Buffers

	Publish/Subscribe API Support for JSON Messaging
	Overview
	Converting Nested Fields in JSON Messages to an Event Block
	Converting Event Blocks to JSON Messages
	Support for Transporting JSON Messages

	Publish/Subscribe API Support for XML Messaging

	Using Connectors
	Overview to Using Connectors
	What Do Connectors Do?
	Connector Examples
	Obtaining Connectors
	Activating Optional Plug-ins
	Setting Configuration Parameters
	Setting Configuration Parameters in a File
	Orchestrating Connectors

	Using the Database Connector
	Overview to Using the Database Connector
	Subscriber Event Stream Processor to SQL Data Type Mappings
	Publisher SQL to Event Stream Processor Data Type Mappings
	Connectivity to Netezza Databases
	Using Log Miner Modes

	Using File and Socket Connectors
	Overview to File and Socket Connectors
	CSV File and Socket Connector Data Format
	XML File and Socket Connector Data Format
	JSON File and Socket Connector Data Format
	Syslog File and Socket Connector Notes
	HDAT Subscribe Socket Connector Notes

	Using the IBM WebSphere MQ Connector
	Using the PI Connector
	Using the Project Publish Connector
	Using the Rabbit MQ Connector
	Using the SMTP Subscribe Connector
	Using the Sniffer Publish Connector
	Using the Solace Systems Connector
	Using the Teradata Connector
	Using the Tervela Data Fabric Connector
	Using the Tibco Rendezvous (RV) Connector
	Writing and Integrating a Custom Connector
	Writing a Custom Connector
	Integrating a Custom Connector

	Using Adapters
	Overview to Adapters
	Using the Database Adapter
	Using the Event Stream Processor Adapter
	Using the File and Socket Adapter
	Using the IBM WebSphere MQ Adapter
	Using the HDAT Reader Adapter
	Using the HDFS (Hadoop Distributed File System) Adapter
	Using the Java Message Service (JMS) Adapter
	Using the SAS LASR Analytic Server Adapter
	Using the PI Adapter
	Using the Rabbit MQ Adapter
	Using the REST Subscriber Adapter
	Using the SAS Data Set Adapter
	Using the SMTP Subscriber Adapter
	Using the Sniffer Publisher Adapter
	Using the Solace Systems Adapter
	Using the Teradata Subscriber Adapter
	Using the Tervela Data Fabric Adapter
	Using the Tibco Rendezvous (RV) Adapter
	Using the Twitter Publisher Adapter

	Enabling Encryption on Socket Connections
	Overview to Enabling Encryption
	Understanding SSL Certificate Requirements
	Understanding the SSL Handshake Process

	Visualizing Event Streams
	Overview to Event Visualization
	Using Streamviewer

	Enabling Guaranteed Delivery
	Overview to Guaranteed Delivery
	Guaranteed Delivery Success Scenario
	Guaranteed Delivery Failure Scenarios
	Additions to the Publish/Subscribe API for Guaranteed Delivery
	Configuration File Contents

	Implementing 1+N-Way Failover
	Overview to 1+N-Way Failover
	Topic Naming
	Overview to Topic Naming
	Rabbit MQ and Solace
	Tervela

	Failover Mechanisms
	Overview to Failover Mechanisms
	Determining ESP Active/Standby State (RabbitMQ)
	Determining ESP Active/Standby State (Solace)
	Determining ESP Active/Standby State (Tervela)
	New ESP Active Actions on Failover (Rabbit MQ)
	New ESP Active Actions on Failover (Solace)
	New ESP Active Actions on Failover (Tervela)

	Restoring Failed Active ESP State after Restart
	Using ESP Persist/Restore
	Message Sequence Numbers
	Metadata Exchanges (Rabbit MQ and Solace)
	Metadata Exchanges (Tervela)
	Required Software Components
	Required Client Configuration
	Required Appliance Configuration (Rabbit MQ)
	Required Appliance Configuration (Solace)
	Required Appliance Configuration (Tervela)

	Running an Event Stream Processing Engine in a Hadoop YARN
Container
	Overview to YARN
	Starting the Server in the Hadoop YARN Container
	Managing the Event Stream Processing Server
	Connecting to an Event Stream Processing Server

	Using Design Patterns
	Overview to Design Patterns
	Design Pattern That Links a Stateless Model with a Stateful
Model
	Controlling Pattern Window Matches
	Augmenting Incoming Events with Rolling Statistics

	Changing Models Dynamically
	Overview
	Safeguards
	Window Modifications
	Insert a Window
	Delete a Window
	Replace a Window
	Replace an Aggregate Window
	Replace an Edge

	Restrictions

	Using the Apache Camel Framework
	Overview
	Installing the Apache Camel Framework
	Installing the RabbitMQ Library
	SAS Event Stream Processing
Implementation
	Using Camel Components in a Maven Project
	Configuring Endpoints
	Using Transformation Beans
	Examples
	Where to Find Examples
	CSV Injection
	Distributed Modeling
	RSS
	Weather

	Authenticating Clients
	Overview
	Server Requirements
	Client Requirements
	Token Validation
	CF UAA Client/Server Information

	Implementing a K-means Clustering Learning Model
	Overview
	Parameters

	Interpreting Event Codes
	Performance Tips
	Functional Window and Notification Window Support Functions
	Dictionary
	ABS
	AND
	BASE64DECODE
	BASE64ENCODE
	BETWEEN
	BOOLEAN
	CEILING
	COMPARE
	CONCAT
	CONCATDELIM
	CONTAINS
	DECREMENT
	DIFF
	EQUALS
	EVENTNUMBER
	FALSE
	FLOOR
	GT
	GTE
	GUID
	INCREMENT
	IF
	IFNEXT
	INDEX
	INDEXOF
	INPUT
	INTEGER
	ISNULL
	ISSET
	INTERVAL
	JSON
	LASTINDEXOF
	LISTITEM
	LISTSIZE
	LONG
	LT
	LTE
	MAPVALUE
	MAPVALUES
	MAX
	MEAN
	MIN
	MOD
	NEG
	NORMALIZESPACE
	NEQUALS
	NOT
	NUMBER
	OR
	OUTPUT
	OUTSTR
	PRECISION
	PRODUCT
	QUOTIENT
	RANDOM
	RGX
	RGXINDEX
	RGXLASTTOKEN
	RGXMATCH
	RGXREPLACE
	RGXREPLACEALL
	RGXTOKEN
	RGXV
	ROUND
	SETCONTAINS
	STARTSWITH
	STRING
	STRINGLENGTH
	STRIP
	SUBSTRING
	SUBSTRINGAFTER
	SUBSTRINGBEFORE
	SUM
	SWITCH
	SYSTEMMICRO
	SYSTEMMILLI
	TIMECURRENT
	TIMEDAYOFMONTH
	TIMEDAYOFWEEK
	TIMEDAYOFYEAR
	TIMEGMTTOLOCAL
	TIMEGMTSTRING
	TIMEHOUR
	TIMEMINUTE
	TIMEMINUTEOFDAY
	TIMEPARSE
	TIMESECOND
	TIMESTAMP
	TIMESTRING
	TIMESECONDOFDAY
	TIMETODAY
	TIMEYEAR
	TOLOWER
	TOUPPER
	TRANSLATE
	TRUE
	URLDECODE
	URLENCODE
	XPATH

	Example: Using a Reserved Word to Obtain an Opcode to Filter
Events
	Example: Using DataFlux Expression Language Global Functions
	Example: Using Blue Fusion Functions
	Setting the Logging Level
	Recommended Reading
	Glossary
	Index

