
SAS® Event Stream
Processing 3.2
Overview

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS® Event Stream Processing 3.2:
Overview. Cary, NC: SAS Institute Inc.

SAS® Event Stream Processing 3.2: Overview

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the
publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at
the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the
publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or
encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer
software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use,
duplication or disclosure of the Software by the United States Government is subject to the license terms of this Agreement
pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4 and, to the extent
required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is
applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the
Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this
Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

November 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

Using This Book . v

Chapter 1 • Overview to SAS Event Stream Processing . 1
Product Overview . 1
Designing an Event Stream Processing Application 2
What is an Event Stream Processing Model? 3

Chapter 2 • Example: Running a Continuous Query . 5
Overview of the Example . 6
Processing Events . 7
C++ Code to Implement the Example . 11
Building and Running the Source Code . 18

Chapter 3 • Example: Processing Trades . 21
Overview of the Example . 21
C++ Code for Processing Trades . 22
XML Code for Processing Trades . 24
Running the XML Code . 27

Recommended Reading . 29
Glossary . 31

iv Contents

Using This Book

Audience

This book provides an overview to SAS Event Stream Processing and describes its
basic functionality. It also provides step-by-step examples that you can adapt for
personal use. The intended audience is assumed to be new to the product and possibly
new to SAS.

v

vi Using This Book

1
Overview to SAS Event Stream
Processing

Product Overview . 1

Designing an Event Stream Processing Application 2

What is an Event Stream Processing Model? . 3

Product Overview

SAS Event Stream Processing enables programmers to build applications that can
quickly process and analyze a large number of continuously flowing events.
Programmers can build applications using SAS Event Stream Processing Studio, the
XML Layer, or the C++ Modeling API that are included with the product. Event streams
are published in applications using the C or JAVA publish/subscribe APIs, connector
classes, adapter executables, Streamviewer, or SAS Event Stream Processing Studio.

Event stream processing engines with dedicated thread pools can be embedded within
new or existing applications. The XML client can be used to feed event stream
processing engine definitions (called projects) into an event stream processing XML
server.

Event stream processing applications typically perform real-time analytics on streams of
events. These streams are continuously published into an event stream processing

1

engine. Typical use cases for event stream processing include but are not limited to the
following:

n capital markets trading systems

n fraud detection and prevention

n sensor data monitoring and management

n cyber security analytics

n operational systems monitoring and management

n personalized marketing

Event stream processing enables the user to analyze continuously flowing data over
long periods of time where low latency incremental results are important.

Designing an Event Stream Processing
Application

SAS Event Stream Processing enables a programmer to write applications that
continuously analyze event streams, or events in motion. Conceptually, an event is
something that happens at a determinable time that can be recorded as a collection of
fields.

When designing an event stream processing application, you must answer the following
questions:

n What event streams are published into an application, and with what protocol and
format?

n What happens to the data? That is, how are event streams transformed and
analyzed?

n What are the resulting event streams of interest? What applications subscribe these
event streams, and in what format and protocol?

Your answers to these questions determine the structure of your model.

2 Chapter 1 / Overview to SAS Event Stream Processing

What is an Event Stream Processing
Model?

An event stream processing model specifies how input event streams from publishers
are transformed and analyzed into meaningful resulting event streams consumed by
subscribers. The following figure depicts the model hierarchy.

Figure 1.1 The Event Stream Processing Model Hierarchy

Engine

A
da

pt
er

s

P
ub

lis
h/

S
ub

sc
rib

e
A

P
I

A
da

pt
er

s

P
ub

lis
h/

S
ub

sc
rib

e
A

P
I

Project

Continuous Query

Source Window

Derived Windows
Event
Stream
Subscribers

Connectors

Connectors

Connectors

Incoming Events

Edge

Edge4

8 9

7

5

6

1

2

3

1 At the top of the model hierarchy is the engine. Each model contains only one
engine instance with a unique name. The XML server is an engine instance.

2 The engine contains one or more projects, each uniquely named. Projects run in a
dedicated thread pool whose size is defined as a project attribute. You can specify a
port so that projects can be spread across network interfaces for throughput
scalability. Using a pool of threads in a project enables the event stream processing
engine to use multiple processor cores for more efficient parallel processing.

3 A project contains one or more continuous queries. A continuous query is
represented by a directed graph. This graph is a set of connected nodes that follow
a direction down one or more parallel paths. Continuous queries are data flows,
which are data transformations and analysis of incoming event streams.

4 Each query has a unique name and begins with one or more source windows.

What is an Event Stream Processing Model? 3

5 Source windows are typically connected to one or more derived windows. Derived
windows can detect patterns in the data, transform the data, aggregate the data,
analyze the data, or perform computations based on the data. They can be
connected to other derived windows.

6 Windows are connected by edges, which have an associated direction.

7 Connectors publish or subscribe event streams to and from an engine. Connectors
are in-process to the engine.

8 The publish/subscribe API can be used to subscribe to an event stream window
either from the same machine or from another machine on the network. Similarly, the
publish/subscribe API can be used to publish event streams into a running event
stream processor project source window.

9 Adapters are stand-alone executable programs that can be networked. Adapters use
the publish/subscribe API to publish event streams to do the following:

n publish event streams to source windows

n subscribe to event streams from any window

.

Several objects in the modeling layers measure time intervals in microseconds. The
following intervals are measured in milliseconds:

n time-out period for patterns

n retention period in time-based retention

n pulse intervals for periodic window output

Most non-real-time operating systems have an interrupt granularity of approximately 10
milliseconds. Thus, specifying time intervals smaller than 10 milliseconds can lead to
unpredictable results.

Note: In practice, the smallest value for these intervals should be 100 milliseconds.
Larger values give more predictable results.

4 Chapter 1 / Overview to SAS Event Stream Processing

2
Example: Running a Continuous Query

Overview of the Example . 6

Processing Events . 7
Processing the First Event . 7
Processing the Second Event . 8
Processing the Third Event . 9
Processing the Fourth Event . 9
Processing the Fifth Event . 11

C++ Code to Implement the Example . 11
Overview to the Code . 11
Create Callback Functions . 12
Create the Engine . 13
Create a Project . 13
Define a Continuous Query Object . 14
Build the Source and Filter Windows . 14
Register the Filter Expression and Add

Connectivity Information . 15
Start the Project and Inject Data . 15
Build Input Data and Insert Events . 16
Clean Up and Shut Down Services . 18

Building and Running the Source Code . 18
How to Build and Run the Source Code . 18
Build Results . 19

5

Overview of the Example

The following example passes events through a source window and then a single filter
window. Events conform to a proscribed schema. The schema is a structured string that
defines and specifies the order of a set of variables in an event.

The following processing steps are demonstrated:

n running a simple continuous query on a published event stream

n performing a filtering computation

n determining specific events to produce in each step of processing

Here is the schema of the source window:

ID*: int32, symbol: string, quantity: int32, price: double

The filter window inherits this schema from the source window.

The schema consists of four fields:

Field Type

ID signed 32-bit integer

symbol literal constant

quantity signed 32-bit integer

price double precision floating-point

The ID field has the * designator to indicate that this field is part of the key for the
window. No other field has this designator, so the ID field completely forms the key.

Key fields are used to identify an event for operations such as Insert, Update, Delete, or
Upsert. Key fields must be unique for an event. You can think of the event stream as a
database and the key fields as lookup keys.

6 Chapter 2 / Example: Running a Continuous Query

A filter expression quantity > 1000 specifies that events are to be passed through
the filter only when the Quantity field in the event exceeds the value of 1000.

Events that enter a source window must have an operation code (opcode). The opcode
can be Insert (I), Update (U), Delete (D), or Upsert (P).

Opcode Description

Insert (I) Adds event data to a window.

Update (U) Changes event data in a window.

Delete (D) Removes event data from a window.

Upsert (P) A merge function in which data for an event is updated, inserted,
or both.

In the following sections, assume that an application feeds five events into the source
window. The lifecycle of events is traced through the continuous query. How to run this
application is described in “Building and Running the Source Code” on page 18.

Processing Events

Processing the First Event

The first event is as follows:

e1: [i,n,10,IBM,2000,164.1]

1 The source window receives e1 as an Input event. It stores the event and passes it
to the filter window.

2 The filter window receives e1 as an Input event, as designated by the “i” in the first
field. The second field in this and all subsequent events designates “normal.”

3 The Quantity field has a value of 2000. Because the filter expression is quantity
> 1000, the filter window stores the input. Typically, a filter window would pass e1

Processing Events 7

forward. However, because the filter window has no dependent windows, there is no
additional data flow for the event.

The window contents are now as follows:

Source Window Filter Window

ID Symbol Qty Price ID Symbol Qty Price

10 IBM 2000 164.1 10 IBM 2000 164.1

Processing the Second Event

The second event is as follows:

e2: [p,n,20,MS,1000,26.67]

1 The source window receives e2 as an Upsert event. It checks whether the window
has a stored event with a key (ID) of 20.

2 An ID of 20 is not stored, so the source window creates a new event e2a: [I,
20, "MS", 1000, 26.67]. It stores this new event and passes it to the filter
window.

3 The filter window receives e2a as an Input event.

4 The value in the Quantity field of e2 equals 1000, which does not meet the
condition set by the filter expression in the schema. Thus, this event is not stored or
passed to any dependent windows.

The window contents are now as follows:

Source Window Filter Window

ID Symbol Qty Price ID Symbol Qty Price

10 IBM 2000 164.1 10 IBM 2000 164.1

20 MS 1000 26.67

8 Chapter 2 / Example: Running a Continuous Query

Processing the Third Event

The third event is as follows:

e3: [d,n,10, , , ,]

Note: For a Delete event, you need only specify key fields. Remember that in this
example, only the ID field is key.

1 The source window receives e3 as a Delete event.

2 The source window looks up the event that is stored with the same key. The Delete
opcode removes the event from the source window.

3 The source window passes the found record to the filter window with the Delete
opcode specified. In this case, the record that is passed to the filter window is as
follows:

e3a: [d,n,10,IBM,2000,164.1]

4 The filter window receives e3a as an Input event.

5 The value in the Quantity field of e3a equals 2000. This old event that was
previously stored makes it through the filter, so it is removed.

The window contents are now as follows:

Source Window Filter Window

ID Symbol Qty Price ID Symbol Qty Price

20 MS 1000 26.67

Processing the Fourth Event

The fourth event is as follows:

e4: [u,n,20,MS,3000,26.99]

Processing Events 9

1 The source window receives e4 as an Update event.

2 The source window looks up the event stored with the same key and modifies it.

3 The source window constructs an update block that consists of the new record with
updated values marked as an update block followed by the old record that was
updated.

4 The block is marked as a Delete event. The new event Update block that is passed
to the filter window looks like this:

e4a: [ub,n,20,MS,3000,26.99] , [d,n,20,MS,1000,26.67]

Note: Both the old and new records are supplied because derived windows often
require the current and previous state of an event. They need these states in order
to compute any incremental change caused by an Update.

5 The filter window receives e4a as an Input event.

6 The value in the Quantity field of e4a > 1000, but previously it was <= 1000. The
input did not pass the previous filter condition, but now it does pass. Because the
input is not present in the filter window, the filter window generates an Insert event of
the following form:

e4b: [i,n,20,MS,3000,26.99]

7 The Insert event is stored. The filter window would pass e4b. However, because
there are no dependent windows, this input does not pass. There is no further data
flow for this event.

The window contents are now as follows:

Source Window Filter Window

ID Symbol Qty Price ID Symbol Qty Price

20 MS 3000 26.99 20 MS 3000 26.99

10 Chapter 2 / Example: Running a Continuous Query

Processing the Fifth Event

The fifth event is as follows:

e5: [i,n,30,ACL,2000,2.11]

1 The source window receives e5 as an Insert event, stores it, and passes e1 to the
filter window.

2 The filter window receives e5 as an Input event. Because the value in the Quantity
field > 1000, the filter window stores the input. Because the filter window has no
dependent windows, there is no further data flow.

The window contents are now as follows:

Source Window Filter Window

ID Symbol Qty Price ID Symbol Qty Price

20 MS 3000 26.99 20 MS 3000 26.99

30 ACL 2000 2.11 30 ACL 2000 2.11

C++ Code to Implement the Example

Overview to the Code

The following C++ code implements the example. You can find this code in $DFESP
HOME/src/filter_exp. Edit the associated Makefile to remove the comments for
architecture-specific build variables.

C++ Code to Implement the Example 11

Create Callback Functions

Before you create the functions that process events, include header files provided with
the SAS Event Stream Processing modeling and execution library (for example,
dfESPeventblock.h) . Then declare two callback functions, one for the source
window and the other for the filter window. You register these functions with the source
window and the filter window to print the events that these windows generate.

You can choose to define callback functions each window. In this example, one callback
function is registered with the source window and another function is registered for the
filter window. The callback for the source window receives the schema of the events
that it receives and a set of one or more events bundled into a dfESPeventblock
object. It also has an optional context pointer to share state across calls or to pass state
into calls. The callback function for the filter window is identical to that for the source
window. The callback functions are used to send a message to standard output.

// -*- Mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*-
//
#include "dfESPeventblock.h"
#include "dfESPevent.h"
#include "dfESPwindow_source.h"
#include "dfESPwindow_filter.h"
#include "dfESPcontquery.h"
#include "dfESPengine.h"
#include "dfESPproject.h"

using namespace std;

// Callback function for the source window.
//
void winSubscribe(dfESPschema *os, dfESPeventblockPtr ob, void *context) {
 callback_ctx *ctx = (callback_ctx *)context;

 ctx->lock->lock();
 cerr << endl << "--" << endl;
 cerr << ctx->windowName << endl;

 // the dfESPeventblock has a dump() method that prints each
 // event that the event block contains.
 ob->dump(os);
 ctx->lock->unlock();
}

12 Chapter 2 / Example: Running a Continuous Query

Create the Engine

Create the engine that sets up fundamental services such as licensing, logging, publish/
subscribe, and threading.

// Main program - closing bracket appears at the very end of the code block
int main(int argc, char *argv[]) {

// --------- BEGIN MODEL (CONTINUOUS QUERY DEFINITIONS) ---------
// @param argc the parameter count as passed into main.
// @param argv the paramter vector as passed into main. Currently
// the dfESP only looks for -t <textfile.name> to write its
// output and -b <badevent.name> to write any bad events (events
// that failed to be applied to a window index).
// @param id the user supplied name of the engine.
// @param pubsub pub/sub enabled or disabled and port pair,
// formed by calling static function dfESPengine::pubsubServer().
// @param logLevel the lower threshold for displayed log messages -
// default: dfESPLLTrace, @see dfESPLoggingLevel
// @param logConfigFile a logging facility configuration file
// - default: stdout.
// @param licKeyFile a FQPN to a license file –
// default: $DFESP_HOME/etc/license/esp.lic
// @return the dfESPengine instance.
//
dfESPengine *myEngine = dfESPengine::initialize(argc, argv,
 "engine", pubsub_DISABLE);
 if (myEngine == NULL) {
 cerr <<"Error: dfESPengine::initialize() failed using all
 framework defaults\n";
 return 1;
}

Create a Project

Ordinarily, engines contain one or more projects. Define the project.

// Define the project
dfESPproject *project_01 = myEngine->newProject("project_01");

C++ Code to Implement the Example 13

Define a Continuous Query Object

Typically, projects contain one or more continuous queries. Define a continuous query
object. This is the first-level container for source and derived windows. The object also
contains window-to-window connectivity information.

// Create a continuous query
dfESPcontquery *cq_01;
cq_01 = project_01->newContquery("contquery_01");

Build the Source and Filter Windows

Build the source window. Specify the following:

n the window name.

n the schema for events.

n the depot used to generate the index and to handle event storage.

n the type of primary index, which defines how event indexing occurs. In this case, the
primary index is a hash tree.

// Build the source window
dfESPwindow_source *sw_01;
sw_01 = cq_01->newWindow_source("sourceWindow_01",
dfESPindextypes::pi_HASH,
dfESPstring("ID*:int64,symbol:string,price:money,quant:int32,
vwap:double,trade_date:date,tstamp:stamp"));

Next, build the filter window. Specify the object name, the depot used to generate the
index and to handle event storage, and the type of primary index. In this case, the
primary index is a hash tree. Unlike with the source window, you do not need to specify
the schema. The filter window uses the same schema as the window that provided input
to it.

// Build a filter window
dfESPwindow_filter *fw_01;
fw_01 = cq_01->newWindow_filter("filterWindow_01",
 dfESPindextypes::pi_HASH);
fw_01->setFilter("quant>1000");

14 Chapter 2 / Example: Running a Continuous Query

Register the Filter Expression and Add
Connectivity Information

Register the filter expression (quant>1000) for this window. Add the subscriber callback
to the source and filter windows. These functions are called whenever a window
produces output events. The events produced are both passed to these callback
functions, and also sent farther down the directed graph for additional processing. Here,
you format the events as CSV rows and dump them to your display. This enables you to
see what each window produces at each step of the computation.

callback_ctx src_ctx, filter_ctx;
 src_ctx.lock = filter_ctx.lock =
 dfESPthreadUtils::mutex::mutex_create(); // a shared lock
 src_ctx.windowName = "sourceWindow_01"; // window name for callback function
 filter_ctx.windowName = "filterWindow_01"; // window name for callback function
 sw_01->addSubscriberCallback(winSubscribe, (void *)&src_ctx);
 fw_01->addSubscriberCallback(winSubscribe, (void *)&filter_ctx);

Add the connectivity information to the continuous query. In this case, connect
sw_01[slot 0] to fw_01.

cq_01->addEdge(sw_01, fw_01);

Start the Project and Inject Data

Define the project's thread pool size and start it. After you start the project, you do not
see anything happen because no data has yet been put into the continuous query.

project_01->setNumThreads(1);
myEngine->startProjects();

// --------- END MODEL (CONTINUOUS QUERY DEFINITION) ---------

At this point, the project is running in the background using the defined thread pool. Use
the main thread to inject data. In production applications, you might dedicate a thread
for each active source window input event stream to optimize performance.

cerr <<endl <<endl;

// Declare some scratch variables to build up and submit the input
// data.

C++ Code to Implement the Example 15

//
dfESPptrVect<dfESPeventPtr> trans;
dfESPevent *p;
dfESPeventblockPtr ib;
bool eventFailure;

//
// --------- BEGIN - DEFINE BLOCKS OF EVENTS AND INJECT into
// running PROJECT ---------
//

cout <<endl<<endl; // Logging uses cout as well, so just use white space
for events.

Build Input Data and Insert Events

Build a block of input data with three insert events. Typically, events are generated by
one or more publishing applications.

// dfESPevent() takes the event schema and the event character string
// where: the i is insert
// else {u|p|d} mean update, upsert and delete respectively.
// The n is normal.
// The rest are the field values for the event.
//

p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,44001,ibm,101.45,5000,100.565,2010-09-07 16:09:01,
 2010-09-07 16:09:01.123, eventFailure");
trans.push_back(p);

p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,50000,sunw,23.52,100,26.3956,2010-09-08 16:09:01,
 2010-09-08 16:09:01.123, eventFailure");
trans.push_back(p);

p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,66666,orcl,120.54,2000,101.342,2010-09-09 16:09:01,
 2010-09-09 16:09:01.123, eventFailure");
trans.push_back(p);

ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
trans.free(); // this clears the vector and frees memory

16 Chapter 2 / Example: Running a Continuous Query

Inject the event block into the graph. Typically, you use the Publish and Subscribe API
to subscribe to events published locally or on a networked computer system. The
following injectdata call is a way to bypass the API and can be useful for testing.

The injectdata call is asynchronous with respect to processing. It deposits the input
block into the queue of the source window, and then the thread pool takes over. Given
this, use quiesce() to stop the thread until all the injected events have been
processed through the entire continuous query.

project_01->injectData(cq_01, sw_01, ib);
project_01->quiesce(); // quiesce the graph of events

// Build & inject another block of input events, this time with updates.
//
p = new dfESPevent(sw_01->getSchema(),
 (char *)"u,n,44001,ibm,100.23,3000,100.544,2010-09-09 16:09:01,
 2010-09-09 16:09:01.123, eventFailure");
trans.push_back(p);

p = new dfESPevent(sw_01->getSchema(),
 (char *)"u,n,50000,sunw,125.70,3333,122.3512,2010-09-07 16:09:01,
 2010-09-07 16:09:01.123, eventFailure");
trans.push_back(p);

p = new dfESPevent(sw_01->getSchema(),
 (char *)"u,n,66666,orcl,99.11,954, 97.4612,2010-09-10 16:09:01,
 2010-09-10 16:09:01.123, eventFailure");
trans.push_back(p);

ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
trans.free();
project_01->injectData(cq_01, sw_01, ib);
project_01->quiesce(); // quiesce the graph of events

Build and inject another block, this time with a single delete event.

p = new dfESPevent(sw_01->getSchema(),
 (char *)"d,n,66666,orcl,99.11,954, 97.4612,2010-09-10 16:09:01,
 2010-09-10 16:09:01.123, eventFailure");
trans.push_back(p);

ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
trans.free();
project_01->injectData(cq_01, sw_01, ib);
project_01->quiesce(); // quiesce the graph of events

C++ Code to Implement the Example 17

cout <<endl<<endl; // Logging uses cout as well, so just use white
space for events

//
// --------- END - DEFINE BLOCKS OF EVENTS AND INJECT into running
// PROJECT ---------

Clean Up and Shut Down Services

Finally, clean up and shut down services.

myEngine->shutdown();
return 0;
}

Building and Running the Source Code

How to Build and Run the Source Code

Suppose that the SAS Event Stream Processing library is installed in /opt/dfESP. You
would enter these settings:

export DFESP_HOME = /opt/dfESP
export LD_LIBRARY_PATH = $DFESP HOME/lib

A Perl script, $DFESP_HOME/bin/dfespenv, sets these environment variables.
However, you can also add these settings to your login shell or script.

Navigate to the example directory, which is $DFESP HOME/src/filter_exp. Use the
make command to build the example. In the Makefile for filter_exp, you find the
following comments for the GNU Compiler Collection (GCC) on Linux:

-- GCC on Linux
Uncomment the next three lines to use these settings.
CXX=g++
CXXFLAGS=-g -m64
LDFLAGS=-L$$DFESP_HOME/lib

18 Chapter 2 / Example: Running a Continuous Query

Build Results

Building the code creates an executable file that you can run. What follows depicts the
results of running that executable.

sourceWindow_01

TID: 0x0005000000000001
depth: 1
 event[0]: <I,N: 44001,ibm,101.45,5000,100.565000,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[1]: <I,N: 50000,sunw,23.52,100,26.395600,2010-09-08
 16:09:01,2010-09-08 16:09:01.123000>
 event[2]: <I,N: 66666,orcl,120.54,2000,101.342000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>

filterWindow_01

TID: 0x0005000000000001
depth: 2
 event[0]: <I,N: 44001,ibm,101.45,5000,100.565000,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[1]: <I,N: 66666,orcl,120.54,2000,101.342000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>

sourceWindow_01

TID: 0x0005000000000002
depth: 1
 event[0]: <UB,N: 44001,ibm,100.23,3000,100.544000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>
 event[1]: <D,N: 44001,ibm,101.45,5000,100.565000,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[2]: <UB,N: 50000,sunw,125.7,3333,122.351200,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[3]: <D,N: 50000,sunw,23.52,100,26.395600,2010-09-08
 16:09:01,2010-09-08 16:09:01.123000>
 event[4]: <UB,N: 66666,orcl,99.11,954,97.461200,2010-09-10
 16:09:01,2010-09-10 16:09:01.123000>
 event[5]: <D,N: 66666,orcl,120.54,2000,101.342000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>

filterWindow_01

Building and Running the Source Code 19

TID: 0x0005000000000002
depth: 2
 event[0]: <UB,N: 44001,ibm,100.23,3000,100.544000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>
 event[1]: <D,N: 44001,ibm,101.45,5000,100.565000,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[2]: <I,N: 50000,sunw,125.7,3333,122.351200,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[3]: <D,N: 66666,orcl,120.54,2000,101.342000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>

sourceWindow_01

TID: 0x0005000000000003
depth: 1
 event[0]: <D,N: 66666,orcl,99.11,954,97.461200,2010-09-10
 16:09:01,2010-09-10 16:09:01.123000>

20 Chapter 2 / Example: Running a Continuous Query

3
Example: Processing Trades

Overview of the Example . 21

C++ Code for Processing Trades . 22

XML Code for Processing Trades . 24

Running the XML Code . 27

Overview of the Example

Consider the following continuous query.

Figure 3.1 Continuous Query Diagram

Trades
(Source)

Trades
Market Feed

Traders
Traders
(Source)

LargeTrades
(Filter)

AddTraderName
(Join)

TotalCost
(Compute)

BySecurity
(Aggregate)

In this continuous query, there are two source windows:

n the Trades window streams data about securities transactions from a trades market
feed

21

n The Traders window streams data about who performs those transactions. This data
could be published from a file, a database, or some other source.

As the source windows get data, the following occurs:

1 The Trades source window flows into the LargeTrades derived window, which filters
out transactions that involve fewer than a defined number of shares.

2 LargeTrades and Traders flow into the join window named AddTraderName. This
window matches filtered transactions with their associated traders.

3 Events from AddTraderName flow into the compute window named TotalCost, where
the cost of the transaction is calculated.

4 Events are passed on to the aggregate window BySecurity, where they are placed
into aggregate groups.

C++ Code for Processing Trades

The following C++ program implements the model. The program follows these steps.

1 Include needed header files from the SAS Event Stream Processing library so that
you can use the appropriate objects to define elements of the model.

2 After the main declaration, define objects for the engine, the project, the event depot,
and the continuous query.

3 Set the date format for the engine.

4 Define the Trades and Traders source windows.

5 Define the LargeTrades filter window.

6 Define the AddTraderName join window. Specify the join conditions.

7 Define the TotalCost compute window.

22 Chapter 3 / Example: Processing Trades

8 Define the AddSecurity aggregate window.

9 Set the number of threads for the engine. Run the project. Shut down the engine.

#include "dfESPengine.h"
#include "dfESPwindow_source.h"
#include "dfESPwindow_aggregate.h"
#include "dfESPwindow_filter.h"
#include "dfESPwindow_join.h"
#include "dfESPwindow_compute.h"
#include "dfESPcontquery.h"
#include "dfESPproject.h"

int main(int argc, char *argv[]) {

 dfESPengine *theEngine
 = dfESPengine::initialize(argc, argv, "theEngine", pubsub_DISABLE);
 dfESPproject *project_01
 = theEngine->newProject("project_01");
 dfESPcontquery *cq_01
 = project_01->newContquery("cq_01");

 theEngine->set_dateFormat((char *)"%d/%b/%Y:%H:%M:%S");

 dfESPwindow_source *Trades
 = cq_01->newWindow_source("Trades", dfESPindextypes::pi_HASH,
 dfESPstring("tradeID*:string,security:string,quantity:int32,
 price:double,traderID:int64,time:stamp"));

 dfESPwindow_source *Traders
 = cq_01->newWindow_source("Traders",
 dfESPindextypes::pi_HASH,
 dfESPstring("ID*:int64,name:string"));

 dfESPwindow_filter *LargeTrades
 = cq_01->newWindow_filter("LargeTrades",
 dfESPindextypes::pi_RBTREE);
 LargeTrades->setFilter("quantity>=100");

 dfESPwindow_join *AddTraderName
 = cq_01->newWindow_join("AddTraderName", dfESPwindow_join::jt_LEFTOUTER,
 dfESPindextypes::pi_RBTREE);
 AddTraderName->setJoinConditions("l_traderID==r_ID");
 AddTraderName->setJoinSelections("l_security,l_quantity,l_price,l_traderID,
 l_time,r_name");
 AddTraderName->setFieldSignatures("security:string,quantity:int32,price:double,
 traderID:int64,time:stamp,name:string");

C++ Code for Processing Trades 23

 dfESPwindow_compute *TotalCost
 =cq_01->newWindow_compute("TotalCost",
 dfESPindextypes::pi_RBTREE,
 dfESPstring("tradeID*:string,security:string,quantity:int32,
 price:double,totalCost:double,traderID:int64,time:stamp,
 name:string"));
 TotalCost->addNonKeyFieldCalc("security");
 TotalCost->addNonKeyFieldCalc("quantity");
 TotalCost->addNonKeyFieldCalc("price");
 TotalCost->addNonKeyFieldCalc("price*quantity");
 TotalCost->addNonKeyFieldCalc("traderID");
 TotalCost->addNonKeyFieldCalc("time");
 TotalCost->addNonKeyFieldCalc("name");

 dfESPwindow_aggregate *BySecurity
 = cq_01->newWindow_aggregate("BySecurity", dfESPindextypes::pi_RBTREE,
 dfESPstring("security*:string,quantityTotal:double,
 costTotal:double"));
 BySecurity->addNonKeyFieldCalc("ESP_aSum(quantity)");
 BySecurity->addNonKeyFieldCalc("ESP_aSum(totalCost)");

 cq_01->addEdge(Trades, 0, LargeTrades);
 cq_01->addEdge(LargeTrades, 0, AddTraderName);
 cq_01->addEdge(Traders, 0, AddTraderName);
 cq_01->addEdge(AddTraderName, 0, TotalCost);
 cq_01->addEdge(TotalCost, 0, BySecurity);

 project_01->setNumThreads(1);
 theEngine->startProjects();

 dfESPengine::shutdown();

 return 0;
}

XML Code for Processing Trades

The following code renders the model in the SAS Event Stream Processing XML
modeling language:

<engine port='55555' dateformat='%d/%b/%Y:%H:%M:%S'>
 <projects>

24 Chapter 3 / Example: Processing Trades

 <project name='trades_proj' pubsub='auto' threads='4'>
 <contqueries>
 <contquery name='trades_cq'>
 <windows>
 <window-source name='Trades'
 index='pi_HASH'>
 <schema>
 <fields>
 <field name='tradeID' type='string' key='true'/>
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='stamp'/>
 </fields>
 </schema>
 </window-source>

 <window-source name='Traders'>
 <schema>
 <fields>
 <field name='ID' type='int64' key='true'/>
 <field name='name' type='string'/>
 </fields>
 </schema>
 </window-source>

 <window-filter name='LargeTrades'>
 <expression>quantity >= 100</expression>
 </window-filter>

 <window-join name='AddTraderName'>
 <join type="leftouter">
 <conditions>
 <fields left='traderID' right='ID' />
 </conditions>
 </join>
 <output>
 <field-selection name='security' source='l_security'/>
 <field-selection name='quantity' source='l_quantity'/>
 <field-selection name='price' source='l_price'/>
 <field-selection name='traderID' source='l_traderID'/>
 <field-selection name='time' source='l_time'/>
 <field-selection name='name' source='r_name'/>
 </output>
 </window-join>

XML Code for Processing Trades 25

 <window-compute name='TotalCost'>
 <schema>
 <fields>
 <field name='tradeID' type='string' key='true'/>
 <!-- These are the non-key fields -->
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='totalCost' type='double' />
 <field name='traderID' type='int64'/>
 <field name='time' type='stamp'/>
 <field name='name' type='string' />
 </fields>
 </schema>
 <!-- These are how the non-key fields are computed-->
 <output>
 <field-expr>security</field-expr>
 <field-expr>quantity</field-expr>
 <field-expr>price</field-expr>
 <field-expr>price*quantity</field-expr>
 <field-expr>traderID</field-expr>
 <field-expr>time</field-expr>
 <field-expr>name</field-expr>
 </output>
 </window-compute>

 <window-aggregate name='BySecurity'>
 <schema>
 <fields>
 <field name='security' type='string' key='true'/>
 <field name='quantityTotal' type='double'/>
 <field name='costTotal' type='double'/>
 </fields>
 </schema>
 <output>
 <field-expr>ESP_aSum(quantity)</field-expr>
 <field-expr>ESP_aSum(totalCost)</field-expr>
 </output>
 </window-aggregate>
 </windows>

 <edges>
 <!-- Traders -> AddTraderName -->
 <edge source='LargeTrades' target='AddTraderName'/>
 <edge source='Traders' target='AddTraderName'/>

 <!-- Trades -> LargeTrades -> AddTraderName -> TotalCost -> BySecurity -->

26 Chapter 3 / Example: Processing Trades

 <edge source='Trades' target='LargeTrades'/>
 <edge source='AddTraderName' target='TotalCost'/>
 <edge source='TotalCost' target='BySecurity'/>
 </edges>
 </contquery>
 </contqueries>
 </project>
 </projects>
</engine>

Running the XML Code

Here are the steps to run the XML code on Unix-like platforms.

1 Execute the event streams processing XML factory server with the model:

$DFESP_HOME/bin/dfesp_xml_server -model file://
full_path_to_xmlfile -http-admin 61001 -http-pubsub 61002.

2 Use dfesp_fs_adapter to populate the traders window with the events in the
traders.csv file. The traders.csv file contains the input events for the Traders window.

$DFESP_HOME/bin/dfesp_fs_adapter -k pub -h dfESP://localhost:
55555/trades_proj/trades_cq/Traders -f traders.csv -t csv -b
256.

3 Use the Streamviewer tool to subscribe to the final BySecurity window to see the
computed data as the trades data flows through the model. For more information
about Streamviewer, see the SAS Event Stream Processing: User’s Guide.

4 Use dfesp_fs_adapter to publish trades data from the trades.csv file. The
trades.csv file contains the input events for the Trades window.

$DFESP_HOME/bin/dfesp_fs_adapter -k pub -h dfESP://localhost:
55555/trades_proj/trades_cq/Trades -f trades.csv -t csv -b 256
-d %d/%b/%Y:%H:%M:%S

Here are the steps to run the XML code on a Microsoft Windows 64 platform.

Running the XML Code 27

1 Execute the event stream processing XML factory server with the trades model:

%DFESP_HOME%\bin\dfesp_xml_server.exe -model file://
full_path_to_trades -http-admin 61001 -http-pubsub 61002

2 Use dfesp_fs_adapter to populate the traders window with the events in the
traders.csv file. The traders.csv file contains the input events for the Traders window.

%DFESP_HOME%\bin\dfesp_fs_adapter.exe -k pub -h dfESP://
localhost:55555/trades_proj/trades_cq/Traders -f traders.csv -
t csv -b 256

3 Use the Streamviewer tool to subscribe to the final BySecurity window to see the
computed data as the trades data flows through the model. For more information
about Streamviewer, see the SAS Event Stream Processing: User’s Guide.

4 Use dfesp_fs_adapter to publish trades data from the trades.csv file. The
trades.csv file contains the input events for the Trades window.

%DFESP_HOME%\bin\dfesp_fs_adapter.exe -k pub -h dfESP://
localhost:55555/trades_proj/trades_cq/Trades -f trades.csv -t
csv -b 256 -d %d/%b/%Y:%H:%M:%S

28 Chapter 3 / Example: Processing Trades

Recommended Reading

SAS Event Stream Processing is supported by the following documents:

n SAS Event Stream Processing: Overview provides an introduction to the product
and an illustrative example.

n SAS Event Stream Processing: User’s Guide describes the product and provides
technical details for writing event stream processing application programs.

n Open $DFESP_HOME/doc/html/index.html in a web browser to access detailed
class and method documentation for the C++ modeling, C, and Java™ client
publish/subscribe APIs. The documentation is organized by modules, namespaces,
and classes.

Specifically, documentation about the following topics is provided:

o C++ Modeling API

n SAS Event Stream Processing API

n SAS Event Stream Processing Connector API

o Publish/Subscribe API

n SAS Event Stream Processing Publish/Subscribe C API

n SAS Event Stream Processing Publish/Subscribe Java API

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive

29

http://sas.com/store/books

Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

30 Recommended Reading

mailto:sasbook@sas.com
http://sas.com/store/books

Glossary

derived windows
windows that display events that have been fed through other windows and that
perform computations or transformations on these incoming events.

directed graph
a set of nodes connected by edges, where the edges have a direction associated
with them.

engine
the top-level container in a model that manages the project resources.

event block
a grouping or package of events with a unique ID for use in a continuous query.

event stream
a continuous flow of event blocks.

event stream processing
a process that enables real-time decision making by continuously analyzing large
volumes of data as it is received.

factory server
a server for factory objects that control the creation of other objects, access to other
objects, or both.

memory depot
a repository for indexes and event data that is used by a project.

31

modeling API
an application programming interface that enables developers to write event stream
processing models.

operation code (opcode)
an instruction that specifies an action to be performed.

publish/subscribe API
a library that enables you to publish event streams into an event stream processor,
or to subscribe to event streams, within the event stream processing model. The
publish/subscribe API also includes a C and JAVA event stream processing object
support library.

source window
a window that has no windows feeding into it and is the entry point for publishing
events into the continuous query.

stream
a sequence of data elements [that are] made available over time.

thread pool
a set of threads that can be used to execute tasks, post work items, process
asynchronous I/O, wait on behalf of other threads, and process timers.

window
a processing node in an event stream processing model. Source and derived
windows can perform aggregations, computations, pattern matching, and other
operations.

32 Glossary

	Contents
	Using This Book
	Audience

	Overview to SAS Event Stream Processing
	Product Overview
	Designing an Event Stream Processing Application
	What is an Event Stream Processing Model?

	Example: Running a Continuous Query
	Overview of the Example
	Processing Events
	Processing the First Event
	Processing the Second Event
	Processing the Third Event
	Processing the Fourth Event
	Processing the Fifth Event

	C++ Code to Implement the Example
	Overview to the Code
	Create Callback Functions
	Create the Engine
	Create a Project
	Define a Continuous Query Object
	Build the Source and Filter Windows
	Register the Filter Expression and Add Connectivity Information
	Start the Project and Inject Data
	Build Input Data and Insert Events
	Clean Up and Shut Down Services

	Building and Running the Source Code
	How to Build and Run the Source Code
	Build Results

	Example: Processing Trades
	Overview of the Example
	C++ Code for Processing Trades
	XML Code for Processing Trades
	Running the XML Code

	Recommended Reading
	Glossary

